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Problem 1 Multiple choice problems

a) The rule for addition two angular momenta with quantum numbers j1 and j2 is that the
total angular momentum quantum number j can take the values

j = j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|.

With j1 = 4 and j2 = 3/2, we therefore get

j =
11

2
,
9

2
,
7

2
,
5

2
.

Hence, alternative C is the correct answer.

b) We require

⟨ψ|ψ⟩ = 1

= |A|2[⟨2|2⟩+ 22⟨4|4⟩+ ⟨6|6⟩] = |A|2[1 + 4 + 1] = 6|A|2.

Choosing A positive and real, we therefore get A = 1/
√
6, which is option E.

c) The energy expectation value is

⟨ψ|Ĥ|ψ⟩ = 1

6

[
⟨2|Ĥ|2⟩+ 22⟨4|Ĥ|4⟩+ ⟨6|Ĥ|6⟩

]
=

ℏω
6

[
2 +

1

2
+ 4

(
4 +

1

2

)
+ 6 +

1

2

]
= ℏω

[
4 +

1

2

]
=

9

2
ℏω.

Hence, E is the correct answer.
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d) Taking the complex conjugate of the prefactors, we get

⟨ψ| = 1

3
[(1− 2i)⟨1|+ 2i⟨2|] ,

which is option D.

e) The ground state of a symmetric potential should be symmetric and have zero notes,
excluding options C, D and E.

Since the potential with n = 3 increases faster than the potential with n = 1 when x > 1,
the wavefunction should decrease more rapidly for n = 3 compared to n = 1. Comparing
ψA and ψB with ψ0, we see that this is the case for ψA. Therefore, ψA is the best option for
a trial wavefunction for the ground state, making A the correct answer.

f) We consider each statement:

A: If ⟨n|ψ⟩ is nonzero only for n = 1, we must have |ψ⟩ = |1⟩. Therefore, since |1⟩ is an
energy eigenstate, ψ is also an energy eigenstate, making this statement true.

B: A state vector can be written as a superposition of any complete set of basis vectors,
not only position basis vectors. Hence, this statement if false.

C: Though the Heisenberg uncertainty principle only sets restrictions on the product of
the variance of px and x, we can always calculate their expectation values, which in fact are
needed to calculate the variance. Hence, this is statement not true.

D: The outcome of a measurement of the energy will leave the system in an energy
eigenstate with energy equal to the outcome of the measurement. When the state before the
measurement is a superposition of energy eigenstates with different eigenenergies, the states
of the system before and after the measurement necessarily have to be different, making this
statement is false.

E: For a Hermitian Hamiltonian, probability is conserved, and hence the normalization is
always ⟨ψ|ψ⟩ = 1. Since this is independent of time, this statement is false.

Conclusion: Option A is correct.

g) Since the Hamiltonian is diagonal, we directly read off the energy eigenvalues as E± =
±ℏω, with corresponding eigenspinors

χ+ =

(
1
0

)
, χ− =

(
0
1

)
.
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A general solution to the Schrödinger equation is therefore χ = a+χ+e
−iE+t/ℏ+a−χ−e

−iE−t/ℏ.
At t = 0, the given state can be written as a superposition of the two energy eigenstates
with coefficients a± = 1/

√
2, meaning that at times t > 0 we have

χ(t) =
1√
2
χ+e

−iE+t/ℏ +
1√
2
χ−e

−iE−t/ℏ =
1√
2

(
e−iωt

eiωt

)
. (1)

Alternative D is the correct answer.

h) We consider each statement.

A: Even though the particle is in the eigenstate of Sx with eigenvalue ℏ/2 at t = 0, Sx and
H do not commute, making the expectation value of Sx time-dependent. We will therefore
not always measure Sx = ℏ/2. This is clear also from the answer in e), where the spin state
is proportional to the eigenspinor of Sx with eigenvalue +ℏ/2 only at certain times. Not
true.

B: We insert t = π
4ω into the time-dependent state found in e), Eq. (1),

χ
( π
4ω

)
=
e−iπ/4

√
2

(
1

eiπ/2

)
=
e−iπ/4

√
2

(
1
i

)
. (2)

Operating on this state with Sy = ℏ
2σy, we get

Syχ
( π
4ω

)
=

ℏ
2

e−iπ/4

√
2

(
0 −i
i 0

)(
1
i

)
=

ℏ
2

e−iπ/4

√
2

(
1
i

)
=

ℏ
2
χ
( π
4ω

)
.

Hence, we see that χ(t) at t = π
4ω is an eigenstate of Sy with eigenvalue ℏ/2, making the

statement true.

C: At certain times the state in Eq. (1) will be an eigenstate of Sy, e.g. at t = π/4ω
as found above. If we measure at exactly these times, we will know the outcome of a
measurement of the spin along the y direction. Hence, this is not true.

D: We found above that χ(t) at t = π/4ω is an eigenvector of Sy with eigenvalue ℏ/2. Since
the operators for Sy and Sx do not commute, the an eigenstate of Sy cannot simultaneously
be an eigenstate of Sx, and this statement is, therefore, not true.

E: The energy eigenstates are simultaneous eigenstates of H and Sz, and a measurement
of the energy would therefore also determine the component of the spin along z. Hence we
do not lose all information about the spin state when measuring the energy. Not true.

Conclusion: Option B is the correct answer.
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i) The momentum eigenstates are delta-function normalized,

⟨p2|p1⟩ = δ(p2 − p1).

Hence, we get

⟨p2|p̂|p1⟩ = p1⟨p2|p1⟩ = p1δ(p2 − p1) = p2δ(p2 − p1),

where we can move p1 outside the bracket since it is a number, not an operator. Hence, the
correct answer is alternative E.

Problem 2 Short answer questions

a) Physical observables should be real quantities. Since Hermitian operators have real

eigenvalues, a physical observable f must be represented by a Hermitian operator f̂ = f̂ †:

f = ⟨f |f̂ |f⟩ = ⟨f |f̂ †|f⟩ = [⟨f |f̂ |f⟩]∗ = f∗.

b) Bosons states must be symmetric under exchange of identical particles, which allows
many identical bosons to occupy the same single-particle state. Fermion states must be
completely antisymmetric under exchange of identical particles, which means that identical
fermions cannot occupy the same single-particle state (Pauli exclusion principle). In three
dimensions bosons have integer spin, while fermions have half-integer spin.

c) Superposition of different energy eigenstates can give time-dependent wavefunctions due
to the different energies in the exponentials. For instance,

Ψ = ψ1e
−iE1t/ℏ + ψ2e

−iE2t/ℏ

gives

|Ψ|2 = |ψ1|2 + |ψ2|2 + 2Re{ψ1ψ
∗
2} cos

(
E1 − E2

ℏ
t

)
,

which has a time-dependent term. Only one term or a superposition of degenerate energy
eigenstates gives no time-dependence.

Problem 3 Normalization condition

Since the state is normalized, we have ⟨ψ|ψ⟩ = 1. The position eigenstates form a complete
basis set, meaning that we have the completeness relation

1 =

∫ ∞

−∞
dx |x⟩⟨x|.
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By inserting a completeness relation, we get

1 = ⟨ψ|ψ⟩ =
∫ ∞

−∞
dx ⟨ψ|x⟩⟨x|ψ⟩ =

∫ ∞

−∞
dx [⟨x|ψ⟩]∗⟨x|ψ⟩ =

∫ ∞

−∞
dx ψ(x)∗ψ(x)

=

∫ ∞

−∞
dx |ψ(x)|2.

Hence, the wavefunction ψ(x) is also normalized.

Problem 4 Identical particles in a box

a) From the formula sheet we have

dW = PdV,

where W , P and V are the work, pressure and volume, respectively. Since only Lx can
change, we have

dV = LyLzdLx,

and, therefore,

dW = PLyLzdLx = FxdLx,

where we have used the fact that the pressure in the x direction is defined as the force Fx

per unit area.
Finally, the work done on the piston by the particle is equal to the reduction in the

particles energy,

dW = −dE.

Hence,

Fx = − dE

dLx
,

which we could also have used directly. We then get, for a general energy state Enxnynz

F
nxnynx
x = −

dEnxnynz

dLx
= − ℏ2

2m

d

dLx

(
n2x
L2
x

+
n2y
L2
y

+
n2z
L2
z

)
=

ℏ2π2n2x
mL3

x

.

Hence, for the ground state (nx = ny = nz = 1) we get

Fx =
ℏ2π2

mL3
x

.
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b) We first need to find the ground state of the system when the box contains 8 identical
non-interacting particles. Since the particles have spin 3

2 , each energy eigenstate labeled
by (nx, ny, nz) can be occupied with four particles with mz = ±3

2 ,±
1
2 . The lowest energy

eigenstates are

nx ny nz
2mL2

ℏ2π2 Enxnynz Order

1 1 1 9/4 1
2 1 1 3 2
1 2 1 21/4 4
1 1 2 21/4 4
3 1 1 17/4 3

We only need the two lowest states, with four particles in each, giving the total force

Fx = 4F 111
x + 4F 211

x =
ℏ2π2

mL3
x

[4 + 16]
Lx=2L
=

5ℏ2π2

2mL3
.

Problem 5 Spin 1
2

a) Since Ĥ0 ∝ Ŝz, Ĥ0 and Ŝz commute and the eigenstates of Ŝz are also eigenstates of Ĥ0.
Therefore, we get

Ĥ0|↑⟩ = − 2µBB0

ℏ
Ŝz|↑⟩ = −µBB0|↑⟩ ≡ −ϵ|↑⟩, (3a)

and

Ĥ0|↓⟩ = ϵ|↓⟩. (3b)

Hence, the energy eigenstates of the system are the spin-up and -down states |↑⟩ and |↓⟩,
with eigenenergies −ϵ and ϵ, respectively.

b) The expectation values are

⟨Sz⟩ = ⟨χ|Ŝz|χ⟩ =
ℏ
2

(
⟨↑ | cosα+ ⟨↓ |e−iϕ sinα

)(
cosα|↑⟩ − eiϕ sinα|↓⟩

)
=

ℏ
2

[
cos2 α− sin2 α

]
=

ℏ
2

[
2 cos2 α− 1

]
, (4)

⟨H0⟩ = − 2µBB0

ℏ
⟨Sz⟩ = −µBB0

[
2 cos2 α− 1

]
= −ϵ

[
2 cos2 α− 1

]
. (5)

|χ⟩ is an energy eigenstate when it is proportional to only |↑⟩ or |↓⟩, meaning for α = π
2 ·n

with n ∈ Z and any ϕ ∈ R.
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c) To simplify the calculations we write the state as

|ψ(t)⟩ = eiµBB0t/ℏ
√
2

[
|↑⟩+ eiϕ

′ |↓⟩
]
, (6)

where

ϕ′ ≡ ϕ− 2iµBB0t/ℏ. (7)

Expressing the Ŝx/y in terms of the ladder operators, we get

Ŝx =
Ŝ+ + Ŝ−

2
, (8a)

Ŝy =
Ŝ+ − Ŝ−

2i
. (8b)

The expectation values are then readily calculated:

⟨Sx⟩(t) =
1

4

(
⟨↑ |+ ⟨↓ |e−iϕ′

)
[Ŝ+ + Ŝ−]

(
|↑⟩+ eiϕ

′ |↓⟩
)

=
1

4

(
⟨↑ |+ ⟨↓ |e−iϕ′

)(
ℏ|↓⟩+ ℏeiϕ

′ |↑⟩
)

=
ℏ
4

[
eiϕ

′
+ e−iϕ′

]
=

ℏ
2
cosϕ′

=
ℏ
2
cos

(
ϕ− 2µBB0t

ℏ

)
, (9a)

⟨Sy⟩(t) =
ℏ
4i

[
eiϕ

′ − e−iϕ′
]

=
ℏ
2
sin

(
ϕ− 2µBB0t

ℏ

)
, (9b)

⟨Sz⟩(t) =
ℏ
4

(
⟨↑ |+ ⟨↓ |e−iϕ′

)(
|↑⟩ − eiϕ|↓⟩

)
=

ℏ
4
[1− 1] = 0. (9c)

The oscillating expectation values of the x and y components of the spin spin describes
Larmor precession in a static magnetic field.

Problem 6 Perturbation theory

a) When λ = 0, Ĥ and Ĥ0 are identical, and the expansion in powers of λ should be equal
to the exact solutions of the unperturbed system, giving

|ψ(0)
n ⟩ = |ϕn⟩,
E(0)

n = ϵn.
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b) We need the matrix element

⟨↓ |Û |↑⟩ = λ2κ

ℏ
⟨↓ |Ŝx|↑⟩ = λκ

(
0 1

)(0 1
1 0

)(
1
0

)
= λκ. (10)

Hence

|χ(1)
− ⟩ = ⟨↓ |Û |↑⟩

E↑ − E↓
|↓⟩ = −λκ

2ϵ
|↓⟩, (11)

E
(2)
− =

|⟨↓ |Û |↑⟩|2

E↑ − E↓
= −λ

2κ2

2ϵ
, (12)

and the ground state to first order in λ is

|χ−⟩ = |↑⟩ − λκ

2ϵ
|↓⟩, (13)

and eigenenergy to second order in λ is

E− = −ϵ− λ2κ2

2ϵ
. (14)

c) We rewrite the Hamiltonian

Ĥ = − 2

ℏ

√
ϵ2 + λ2κ2

[
ϵ√

ϵ2 + λ2κ2
Ŝz −

λκ√
ϵ2 + λ2κ2

Ŝx

]
= − 2

ℏ
ξŜ · n̂, (15)

where

ξ =
√
ϵ2 + λ2κ2, (16)

n̂ = − λκ

ξ
êx +

ϵ

ξ
êz. (17)

Using n̂ as the spin quantization axis, defining the operator Ŝn = Ŝ · n̂ with eigenstates

Ŝn|±⟩ = ±ℏ
2
|±⟩, (18)

we find

Ĥ|±⟩ = −2

ℏ
ξŜn|±⟩ = ∓ξ|±⟩. (19)

Therefore, the eigenenergies are

E∓ = ∓ξ. (20)

For small λ, we get

E− = −
√
ϵ2 + λ2κ2 ≈ −ϵ− λ2κ2

2ϵ
+ . . . , (21)

which agrees with our result from perturbation theory.
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