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Problem 1 Multiple choice problems

a) The general rule when adding two spins is that the total spin quantum number can take
the values

s = s1 + s2, s1 + s2 − 1, . . . |s1 − s2|.

When adding more than two spins, we have to repeat this procedure. For 1
2 + 1

2 we get

s = 1
2 + 1

2 ,
1
2 −

1
2 = 1, 0.

For 1
2 + 1

2 + 1,

s = 1 + 1, 1− 1, 0 + 1 ⇒ s = 2, 1, 0.

Hence, alternative E is the correct one.

b) The relevant eigenvalue equation is Sy|χ−y 〉 = ~
2σy|χ

−
y 〉 = −~

2 |χ
−
y 〉. By using the Pauli

matrix σy, one can see that alternative E is the correct one.

c) The dual vector of |n〉 is 〈n|. For a general vector |ψ〉 =
∑

n cn|n〉, the dual vector is
given by 〈ψ| =

∑
n c
∗
n〈n|. In this case we therefore get

〈ψ| = A∗
[
(−3i)〈1|+ (1 + 2i)〈2|+ 〈3|

]
. (1)

This is option D.
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d) We require

1 = 〈ψ|ψ〉 = |A|2[〈1| − 2i〈2|+ 2〈3|][|1〉+ 2i|2〉+ 2|3〉] = |A|2[1 + 4 + 4] = 9|A|2. (2)

Choosing A real and positive, we get A = 1
3 — option C is correct.

e) The probabilities associated with each energy is Pn = |cn|2, where c1 = A, c2 = −2i and
c3 = 2A. Hence,

〈E〉ψ = |A|2[E1 + 4E2 + 4E3] =
1

9
· 3

2
~ω +

4

9
· 5

2
~ω +

4

9
· 7

2
~ω =

17

6
~ω. (3)

Option E is the correct answer.

f) Let us go through the wrong options first. Option B: The integral of the probability
density has to yield 1, not the probability density itself. Option D: The time-dependent
wave function after the measuring E1 is Ψ(x, t) = ψ1(x)e−iE1t~. Option E: The ratio of the
probabilities for measuring E1 or E2 is (C1

C1
)2. Hence, we are left with the probability density

(options A and C) which oscillates with time before the measurement is made

|Ψ(x, t)|2 = |ψ1(x)|2 + |ψ2(x)|2 + 2C1C2ψ1(x)ψ2(x) cos
(E1 − E2

~
t
)
. (4)

Hence, A is the correct option.

g) Firstly, one can measure any of the spin components, therefore option E is wrong.
Secondly, if the probability for measuring Sz ”up” is 2

5 (option A) this leads immediately to
the probability Sz ”down” for 1− 2

5 = 3
5 (option B). This leads to a contradiction because

we can have only one correct answer (and neither of them is correct anyhow). Testing the
eigenspinors for Sx and Sy

• χ+
x = 1√

2

(
1
1

)
[This one has to deduce because it was not listed in Problem 1b).]

• χ+
y = 1√

2

(
1
i

)
for the probability amplitude 〈χ+

x,y|χ〉 shows that option C is the correct answer.

h) Normalization of the wave function in the momentum space leads to a simple integral
and C = 1√

p0
. The expectation value 〈φ(p)|p2|φ(p)〉 is also another simple integral with the

outcome 〈p2〉 =
p20
3 . Therefore, option A is the correct answer.

i) Let us first check the energy levels, which are En = (n2x + n2y)ε. This means that the
eigenstates ψ11 and ψ22 correspond to energies E11 = 2ε and E22 = 8ε. The eigenstates ψ12

and ψ21 are degenerate with energy E = 5ε. Therefore, the options C, D and E are wrong.
A measurement of the degenerate energy E12 = E21 = 5ε leads to a (normalized) linear
combination the degenerate eigenstates Ψ = 1√

2
(ψ12 + iψ21) with the probability 1

5 + 1
5 = 2

5 .

Hence, the option B is correct.
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j) Since the particles are fermions, they cannot all be in the same single-particle state.
However, two particles can occupy each single-particle energy state due to the two possible
spin directions. Hence, to minimize the total system energy we shall need to test (partly)
filling the four lowest energy states, which have quantum numbers (0, 0, 0), (1, 0, 0), (0, 1, 0)
and (0, 0, 1). Note that nx/y/z indices start running from 0 unlike in the case of an infinite
quantum well. Let us go through the three lowest energy configurations (nx, ny, nz):

(i) Configuration 2× (0, 0, 0) + 2× (1, 0, 0) + 1× (0, 1, 0)→ E = 19~ω
(ii) Configuration 2× (0, 0, 0) + 1× (1, 0, 0) + 2× (0, 1, 0)→ E = 20~ω

(iii) Configuration 2× (0, 0, 0) + 2× (1, 0, 0) + 1× (0, 0, 1)→ E = 20~ω
Hence, C is the correct answer.

Problem 2 Short answer questions

a) The ladder operators of harmonic oscillatorare defined as

a =

√
mω

2~
x̂+

i√
2m~ω

p̂

a† =

√
mω

2~
x̂− i√

2m~ω
p̂.

This shows that they are the adjoints of each other, not themselves as required for Hermitian
operators, and therefore, they will not produce real eigenvalues. The ladder operators shift
energy eigenstates up or down rather than providing measurable observables directly. On
the other hand, their product N = a†a (number operator) and Hamiltonian are Hermitian.

b) The short answer is, yes. Since 〈H〉ψ ≥ E0, the variational method turns the estimation
of the ground state energy into a minimization problem. By using trial functions (states) ψ
(|ψ〉) with many free parameters, it is possible to achieve very good estimates for the ground
state of a system. Similarly, the variational method can be applied to excited states provided
that the trial wave function is kept orthogonal to any lower lying states. This means adding
corresponding constraints in the minimization problem. In practice, the causes increased
complexity as one moves higher up in the excited states.

c) The hyperfine structure of the hydrogen atom arises due to the interaction between the
magnetic moment of the electron and the magnetic moment of the nucleus (proton). It is a
finer splitting of spectral lines than the fine structure, caused by these magnetic interactions.
For the ground state, the interaction is characterized by the dot product Ŝe · Ŝp between the
individual spins.
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d) A coherent state in the context of a quantum harmonic oscillator is a special type of
quantum state that exhibits properties closely resembling those of a classical harmonic
oscillator. It is defined as an eigenstate of the annihilation operator

a|α〉 = α|α〉.

Coherent states minimize the Heisenberg uncertainty relation ∆x∆p = ~
2 , and have equal

uncertainties in position and momentum.

Problem 3 Angular momentum addition

a) The total number of coupled angular momentum states is given by (2j1 + 1)(2j2 + 1)
where j1 = 3

2 and j1 = 1
2 . There are 8 angular momentum configurations |j1,m1〉|j2,m2〉 for

the coupled system.

b) The total angular momentum values are given by j = |j1 − j2|, ..., j1 + j2. This means
that there are two possible values j = 1 or j = 2. For each, mj = −j, ..., j. Thus, there
are 3 possible mj values (-1,0,+1) for j = 1 and 5 possible mj values (-2,-1,0,+1,+2) for
j = 2. The combinations of these yield 8 angular momentum configuration |j,m〉 which is in
agreement with a).

c) Let use recall that Jz = J1z + J2z which means that it operates on the state |j1j2m1m2〉
in the following manner

Jz|j1j2m1m2〉 = ~(m1 +m2)|j1j2m1m2〉. (5)

Let us operate next with the commutator [Jz, J1+] = JzJ1+ − J1+Jz

JzJ1+|j1j2m1m2〉 = Jz~
√

(j1 −m1)(j1 +m1 + 1)|j1j2m1 + 1m2〉 (6)

= ~2(m1 +m2 + 1)
√

(j1 −m1)(j1 +m1 + 1)|j1j2m1 + 1m2〉, (7)

J1+Jz|j1j2m1m2〉 = J1+~(m1 +m2)|j1j2m1m2〉 (8)

= ~2(m1 +m2)
√

(j1 −m1)(j1 +m1 + 1)|j1j2m1 + 1m2〉. (9)

This lead to the result

[Jz, J1+]|j1j2m1m2〉 = ~J1+|j1j2m1m2〉, (10)

and we can conclude that [Jz, J1+] = ~J1+.
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d) Let us write Ĵ2 = Ĵ2
1 + Ĵ2

2 + 2Ĵ1 · Ĵ2. We can now expand the commutator as

[Ĵ2, J1+] = [Ĵ2
1, J1+] + [Ĵ2

2, J1+] + 2[Ĵ1 · Ĵ2, J1+]. (11)

The first commutator gives zero because Ĵ2
1 is a scalar operator and does not involve m1.

The second one involves operations on different subsystem and gives zero as well. We are
left with the last one

[Ĵ1 · Ĵ2, J1+] = Ĵ1 · [Ĵ2, J1+] + [Ĵ1, J1+] · Ĵ2 = [Ĵ1, J1+] · Ĵ2, (12)

where we have to use the component form of the ladder operator Ĵ1 = J1x + iJ1y next. By
using the standard commutator rules for the components, one can show that

[Ĵ1, J1+] · Ĵ2 = [J1x, J1+]J2x + [J1y, J1+]J2y + [J1z, J1+]J2z (13)

= [J1x, iJ1y]J2x + [J1y, J1x]J2y + [J1z, J1+]J2z (14)

= − ~J1zJ2x − i~J1zJ2y + ~J1+J2z. (15)

Therefore, the final result is

[Ĵ2, J1+] = 2[Ĵ1 · Ĵ2, J1+] = 2~J1z(−J2x − iJ2y) + 2~J1+J2z (16)

= − 2~J1zJ2+ + 2~J1+J2z. (17)

This result may seem confusing at first but it highlights the fact that Ĵ2 couples Ĵ1 and Ĵ2.
Further, it operates on the ”new states”, that is the quantum numbers j and mj , while the
latter are associated with the ”old states” of the individual particles.

e) The state with the highest total angular momentum jmax = 2 and mj = jmax = 2
corresponds to the case where the individual spins are aligned ”up” and mj = m1 + m2.
Therefore, there is a direct correspondence |2, 2〉J = |32 ,

1
2〉S .

f) Since, mj = jmax − 1 = 1 we will need to solve the state |2, 1〉J by using the ladder
operator

Ĵ−|j,m〉 =
√

(j +m)(j −m+ 1)|j,m± 1〉 (18)

on the highest total angular momentum state (as stated above). We will do this with respect
to the ”new” and ”old” states

Ĵ−|2, 2〉J =
√

(2 + 2)(2− 2 + 1)|2, 1〉J = 2~|2, 1〉J (19)

(Ĵ1− + Ĵ2−)|32 ,
1
2〉S = ~

√
(32 + 3

2)(32 −
3
2 + 1)|12 ,

1
2〉S (20)

+~
√

(12 + 1
2)(12 −

1
2 + 1)|32 ,−

1
2〉S (21)

=
√

3~|12 ,
1
2〉S + ~|32 ,−

1
2〉S (22)

There is equivalence between the two equations and we can write

|2, 1〉J =
√
3
2 |

1
2 ,

1
2〉S + 1

2 |
3
2 ,−

1
2〉S . (23)

A quick check of the coefficients reveals that the new state is normalized, as it should.
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g) Repeat the procedure for mj = jmax − 2 = 0 corresponding to the state |2, 0〉J by using
the ladder operator to the previous result for |2, 1〉J .

Ĵ−|2, 1〉J =
√

(2 + 1)(2− 1 + 1)|2, 0〉J =
√

6~|2, 0〉J (24)

(Ĵ1− + Ĵ2−)|12 ,
1
2〉S = 2~| − 1

2 ,
1
2〉S + ~|12 ,−

1
2〉S (25)

(Ĵ1− + Ĵ2−)|32 ,−
1
2〉S =

√
3~| − 1

2 ,−
1
2〉S (26)

Note that the ladder operator Ĵ2− cannot operate on the state |31 ,−
1
2〉S because it corresponds

to m2 = m2min. The equivalence between the new and old states leads to the final result.

|2, 0〉J = 1√
2
| − 1

2 ,
1
2〉S + 1√

2
|12 ,−

1
2〉S , (27)

which is normalized.

h) The state with a reduced total angular momentum j = jmax−1 = 1 and mj = jmax−1 = 1
corresponds to a new set of ladders for the angular momentum configurations. Therefore,
the ladder operator method is not the solution this time. Instead, we require that the state
|1, 1〉J has to be orthonormal with respect to the state |2, 1〉J . For mj = m1 +m2 = 1, the
only possible old states contributing are |32 ,−

1
2〉S and |12 ,

1
2〉S leading to

|1, 1〉J = A|32 ,−
1
2〉S +B|12 ,

1
2〉S , (28)

where we need to solve the cofactors such that 〈2, 1|1, 1〉J = 0. Combining this with the
normalization leads to the result

|1, 1〉J = −
√
3
2 |

3
2 ,−

1
2〉S + 1

2 |
1
2 ,

1
2〉S . (29)

We have solved now 4 of the 8 coupled angular momentum states. The remaining states
would follow by applying the ladder operators subsequently. Of course, one can use tables
for the Clebsch-Gordan coefficients which we have been calculating herein.

Problem 4 Identical particles - two boson

a) We shall solve the wave functions and total energies of an unperturbed system. Recall
that the potential for a one-dimension infinite well is

V (x) =

{
0, 0 ≤ x ≤ L,
∞, otherwise

(30)

and one can find the related wavefunctions and energies in the formula sheet. For two
bosons, the eigenstate and eigenenergies of the ground state (n = 1) are

Ψground(x1, x2) =
2

L
sin
(πx1
L

)
sin
(πx2
L

)
(31)
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and

Eground = 2E1 = 2
π2~2

2mL2
=
π2~2

mL2
. (32)

By taking into account the symmetry requirement for bosons (symmetry upon particle
exchange), the first excited state (n1 = 1, n2 = 2) becomes,

Ψexcited(x1, x2) =
1√
2

[ψ1(x1)ψ2(x2) + ψ2(x1)ψ1(x2)] . (33)

Substitution of the single-particle eigenfunctions results in

Ψexcited(x1, x2) =
2

L
√

2

[
sin
(πx1
L

)
sin

(
2πx2
L

)
+ sin

(
2πx1
L

)
sin
(πx2
L

)]
. (34)

The corresponding total energy is

Eexcited = E1 + E2 =
π2~2

2mL2
+

4π2~2

2mL2
=

5π2~2

2mL2
. (35)

b) Let us start from the probability density. If we already take into account the action of
the δ-function in the double integral (for x1 and x2), the wave function (for a single integral
x = x1 = x2) becomes

Ψground(x, x) =
2

L
sin2

(πx
L

)
(36)

The probability density is thus

|Ψground(x, x)|2 =

(
2

L
sin2

(πx
L

))2

=
4

L2
. sin4

(πx
L

)
(37)

Energy correction due to the ground state perturbation is

Ecorr = 〈Ψground|V |Ψground〉 = −V0
4

L

∫ L

0
sin4

(πx
L

)
dx (38)

where using the trigonometric equation

sin4(a) =
3

8
− 1

2
cos(2a) +

1

8
cos(4a) (39)

the integral becomes

Ecorr = −V0
4

L

∫ L

0

(
3

8
− 1

2
cos

(
2πx

L

)
+

1

8
cos

(
4πx

L

))
dx. (40)
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The two latter terms contribute to zero once integrated over the full range of the finite
potential (symmetry!). We are left with the first integral∫ L

0

3

8
dx =

3

8
L (41)

which is trivial. Therefore,

Ecorr = −V0
4

L
· 3

8
L = −3

2
V0 (42)

and the ground state energy becomes

Eground =
π2~2

mL2
− 3

2
V0. (43)

c) The first-order energy correction to the first excited state is given by:

Ecorr = 〈Ψexcited|Vint|Ψexcited〉 (44)

= − V0L
∫ L

0

∫ L

0
Ψ∗excited(x1, x2)δ(x1 − x2)Ψexcited(x1, x2) dx1 dx2. (45)

Using the delta function δ(x1 − x2), again, this simplifies to:

Ecorr = −V0L
∫ L

0
|Ψexcited(x, x)|2 dx. (46)

The wave function at x1 = x2 = x becomes

Ψexcited(x, x) =
1√
2

(
ψ1(x)ψ2(x) + ψ2(x)ψ1(x)

)
= 2 · 1√

2

2

L
sin
(πx
L

)
sin

(
2πx

L

)
, (47)

and the corresponding probability density is

|Ψexcited(x, x)|2 =

(
2
√

2

L
sin
(πx
L

)
sin

(
2πx

L

))2

=
8

L2
sin2

(πx
L

)
sin2

(
2πx

L

)
. (48)

Next, we substitute this in the energy correction

Ecorr = −8V0
L

∫ L

0
sin2

(πx
L

)
sin2

(
2πx

L

)
dx. (49)

Using the trigonometric identity

sin2 θ1 sin2 θ2 =
1

4

[
1− cos(2θ1)− cos(2θ2) + cos(2θ1 − 2θ2)

]
, (50)

8



we expand the integral further.

Ecorr =− 8V0
L
· 1

4

∫ L

0

[
1− cos

(
2πx

L

)
− cos

(
4πx

L

)
+ cos

(
2πx

L

)]
dx (51)

= − 2V0
L

∫ L

0

[
1− cos

(
4πx

L

)]
dx. (52)

Again, the latter integral contributes zero and we are left with

Ecorr = −2V0
L

∫ L

0
1 dx = −2V0

L
· L = −2V0. (53)

Therefore, the total energy of the first excited state is

Eexcited =
5π2~2

mL2
− 2V0. (54)

Comparing the ground state and the first excited state before and after perturbation reveals
that, in addition to lowering the total energies in both cases, V reduces the energy gap by
an amount 1

2V0.

Problem 5 Variational principle

a) The expectation value is

〈E〉 =
〈ψ(r)|Ĥ|ψ(r)〉
〈ψ(r)|ψ(r)〉

≥ E0 (55)

which is the basis of the variational approach. We shall start by normalizing the wave
function where the probability density plays a key role∫

|ψ(r)|2d3r =

∫ ∞
0

A2e−2br
2 · 4πr2dr (56)

= 4πA2

∫ ∞
0

r2e−2br
2
dr = 1. (57)

Note that we must use spherical coordinates now. The integral can be computed two ways
by using the equations in the formula sheet. However, special care needs to be taken in
terms of the integration limits (r ≥ 0). Let us use the equation∫ ∞

0
x2e−ax

2
dx =

Γ
(
3
2

)
2a3/2

, Γ

(
3

2

)
=

√
π

2
. (58)

This gives ∫ ∞
0

r2e−2br
2
dr =

√
π

4(2b)3/2
→ A2 =

(
2b

π

)3/2

, (59)
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and

ψ(r) =

(
2b

π

)3/4

e−2br
2
. (60)

b) The potential energy comes from the Coulomb potential and can be written as a

V (b) = − e2

4πε0

∫
|ψ(r)|2 1

r
d3r (61)

= − e2

4πε0
A2 · 4π

∫ ∞
0

re−2br
2
dr = −e

2

ε0
A2 · 1

4b
, (62)

where we have used a table integral in the formula sheet∫ ∞
0

x2n+1e−ax
2
dx =

n!

2an+1
→

∫ ∞
0

re−2br
2
dr =

1

2(2b)
. (63)

Substituting A at this stage leads to the result

V (b) = −e
2

ε0
·
√

2b

2π3/2
. (64)

c) The kinetic energy involves the Laplacian

∇2ψ(r) =
1

r2
∂

∂r

(
r2
∂ψ(r)

∂r

)
=

1

r2
∂

∂r

(
r2 ·

(
− 2br2Ae−br

2))
(65)

= − 6br2Ae−br
2

+ 4br4Ae−br
2
. (66)

Insert this to the integral for kinetic energy

T (b) = − ~2

2m

∫
ψ(r)∇2ψ(r)d3r (67)

=
~2

2m
A2 · 4π

[
6b

∫ ∞
0

r2Ae−2br
2
dr − 4b2

∫ ∞
0

r4Ae−2br
2
dr

]
. (68)

Again, we are dealing with Gaussian integrals∫ ∞
0

r2e−2br
2
dr =

Γ
(
3
2

)
2(2b)3/2

=
1
2Γ
(
1
2

)
2(2b)3/2

=

√
π

4(2b)3/2
, (69)∫ ∞

0
r4e−2br

2
dr =

Γ
(
5
2

)
2(2b)3/2

=
3
2Γ
(
3
2

)
2(2b)3/2

=
3
√
π

8(2b)3/2
. (70)
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Substitute these results and write out A2

T (b) =
~2

2m
·
(

2b

π

)3/2

· 4π
[
6b ·

√
π

4(2b)3/2
− 4b2 · 3

√
π

8(2b)3/2

]
(71)

=
~2

2m
· 4
(

6b

4
− 4b2 · 3

16b

)
=

~2

2m

(
6b− 3b

)
(72)

=
3~2

2m
b. (73)

d) The total energy E(b) becomes

E(b) = T (b) + V (b) =
3~2

2m
b− e2

ε0
·
√

2b

2π3/2
. (74)

Take the derivative

dE(b)

db
=

3~2

2m
− e2

2ε0
·
√

2

2π3/2
· b−1/2 = 0 (75)

and solve

b−1/2 =
3
√

2~2π3/2ε0
e2m

→ b =
e4m2

18~4π3ε20
. (76)

Substitute this to the expressions for kinetic and potential energy

T (b) =
3~2

2m
· e4m2

18~4π3ε20
=

e4m

12~2π3ε20
, (77)

V (b) = − e2

ε0
·
√

2

2π3/2
·

√
e4m2

18~4π3ε20
= − e4m

6~2π3ε20
. (78)

Hence, the optimized total energy becomes

E(bmin) = − e4m

12~2π3ε20
(≥ E0). (79)

e) Let us calculate the numerical value for the optimized total energy by plugging in the
physical constants. The unit conversions require some consideration. For example, the
exponent of the numerator becomes less than -100 (if one uses the standard SI units) which
cannot be handled by many (simple) calculators.

As expected, the numerical value Emin = −11.5 eV is higher than the exact answer -13.6 eV.
The overestimation is 15%, i.e. quite sizeable still.
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By comparing the trial function (Gaussian-type) with the exact solution of the ground
state wave function of hydrogen atom ψ(r) ∼ e−r/a0 , one can conclude that despite the
decaying profile there is considerable difference as r → 0. The derivative of the exact solution
(Slater-type function) does not go to zero but there is a ”cusp” at r = 0. However, in
practice, quantum chemists use trial wave functions that comprise linear combinations of
(many) Gaussian functions because of their nice analytical properties while taking integrals
(meaning that there is no need for numerical integration). We have just evidenced this in
problems (a-c)!
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