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1a) The equation is
y′′(x) + p(x) y′(x) + q(x) y(x) = 0

with

p(x) = 1 +
x

x2 + 1
, q(x) =

1

4

(
1 +

2x− 1

x2 + 1

)
.

The singular points are the zeros x = ±i of the denominator x2+1, and possibly x =∞.

The rational functions p(x) and q(x) both have simple poles at both singular points
x = ±i. In fact,

p(x) = 1 +
x

(x− i)(x+ i)
= 1 +

C1

x− i
+

C2

x+ i

with

C1 = C2 =
1

2
,

and

4q(x) = 1 +
2x− 1

(x− i)(x+ i)
= 1 +

C3

x− i
+

C4

x+ i

with

C3 = 1 +
i

2
, C4 = 1− i

2
.

Hence both x = i and x = −i are regular singular points.

To check the nature of the possible singular point x =∞ we change variable to u = 1/x
and use that

dy

dx
=

du

dx

dy

du
= − 1

x2
dy

du
= −u2 dy

du
,

d2y

dx2
= u2

d

du

(
u2

dy

du

)
= u4

d2

du2
+ 2u3

dy

du
.

The equation takes the following form,

d2y

du2
+

(
2

u
− p

u2

)
dy

du
+

q

u4
dy

du
= 0 .

We have that
x

x2 + 1
∼ 1

x
,

2x− 1

x2 + 1
∼ 2

x

as x→∞, and hence
p

u2
∼ 1

u2
,

q

u4
∼ 1

4u4

as x→∞, u = 1/x→ 0.

Hence x =∞ is an irregular singular point of the equation.
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1b) To find the leading asymptotic behaviour of y(x) as x→∞ we write y(x) = eS(x), this
gives the equation

S′′(x) + (S′(x))2 + p(x)S′(x) + q(x) = 0 .

We make the ansatz S′(x) = Axα with A and α constant and get that

Aαxα−1 +A2x2α + p(x)Axα + q(x) = 0 .

In the limit x → ∞ we have that p(x) ∼ 1 and q(x) ∼ 1/4 to leading order. We may
neglect xα−1 as compared to p(x)xα. We have to choose α = 0, and we get the equation

A2 +A+
1

4
=

(
A+

1

2

)2

= 0 ,

with the unique solution A = −1/2.

We next write S = S0 + S1 with S′0 = −1/2. This gives for S1 the equation

S′′1 (x) +

(
−1

2
+ S′1(x)

)2

+ p(x)

(
−1

2
+ S′1(x)

)
+ q(x) = 0 ,

which we rewrite further as

S′′1 (x) + (S′1(x))2 + (p(x)− 1)S′1(x) +
1

4
− p(x)

2
+ q(x) = 0 ,

and even more explicitly,

S′′1 (x) + (S′1(x))2 +
x

x2 + 1
S′1(x)− 1

4(x2 + 1)
= 0 .

In this equation we make the ansatz S′1(x) = Bxβ and keep only the leading orders of
the fractions, this gives the equation

Bβxβ−1 +B2x2β +
1

x
Bxβ − 1

4x2
= 0 .

The obvious choice is β = −1, giving the equation

B2 − 1

4
= 0 ,

with the two solutions B = ±1/2. Integration of the equation

S′ = S′0 + S′1 = −1

2
± 1

2x

gives that

S = S0 + S1 = −x
2
± 1

2
lnx+ lnC±

and
y(x) = eS(x) = C± x

± 1
2 e−

x
2 .
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1c) At a regular singular point we know that the leading asymptotic behaviour is a power.
Close to the singular point x = i we try the approximate solution

y(x) = (x− i)α

hoping to find a good value for the power α. To leading order we should have that

α(α− 1)(x− i)α−2 + p(x)α(x− i)α−1 + q(x)(x− i)α = 0 .

The index equation is the condition that the coefficient in front of (x − i)α−2 in this
equation has to vanish. With

p(x) ∼ C1

x− i
, C1 =

1

2
, q(x) ∼ C3

4(x− i)
, C3 = 1 +

i

2
,

we get the following index equation,

α(α− 1) + C1α = 0 ,

with the two solutions α = 0 or α = 1− C1 = 1/2.

The index α = 0 defines a solution y1(x) which is analytic at x = i with y1(i) 6= 0. The
other index α = 1/2 defines a linearly independent solution y2(x) =

√
x− i f(x), where

f(x) is analytic at x = i and f(i) 6= 0.

A similar analysis at x = −i identifies another pair of linearly independent solutions,
y3(x) which is analytic and nonzero at x = −i, and y4(x) =

√
x+ i g(x), where g(x) is

analytic and nonzero at x = −i.

1d) After our analysis of the asymptotic behaviours at the singular points we are now in a
position to write down the following two functions that both have the correct asymptotic
behaviours at all three singular points,

y5(x) =
√
x− i e−

x
2 , y6(x) =

√
x+ i e−

x
2 .

It seems at least a reasonable guess that they are two linearly independent exact solu-
tions of the equation.

The difference y5(x) − y6(x) has the subdominant asymptotic behaviour x−
1
2 e−

x
2 at

x = ∞, because the dominant asymptotic behaviour x
1
2 e−

x
2 cancels when we take the

difference.

In order to verify that y5(x) is a solution we compute

y′5 =

(
1

2(x− i)
− 1

2

)
y5 ,

y′′5 = − 1

2(x− i)2
y5 +

(
1

2(x− i)
− 1

2

)2

y5 =

(
− 1

4(x− i)2
− 1

2(x− i)
+

1

4

)
y5 .

We need to verify that

− 1

4(x− i)2
− 1

2(x− i)
+

1

4
+ p(x)

(
1

2(x− i)
− 1

2

)
+ q(x) = 0 .

3



We write this equation as

− 1

4(x− i)2
+
p(x)− 1

2(x− i)
+

1

4
− p(x)

2
+ q(x) = 0 ,

or more explicitly as

− 1

4(x− i)2
+

x

x2 + 1

1

2(x− i)
− 1

4(x2 + 1)
= 0 .

Multiplication by 4(x2 + 1) = 4(x− i)(x+ i) gives the equivalent equation

−x+ i

x− i
+

2x

x− i
− 1 = 0 ,

which obviously holds.

The verification that y6(x) is a solution is the same, we just replace i by −i.

2a) The boundary layer is at x = 0, because the coefficients ε in front of y′′ and e−x in front
of y′ have the same sign, with a large ratio e−x/ε, implying that there exists a solution
which is everywhere rapidly decreasing with increasing x. The only way this solution
can avoid blowing up as x→ 0+ is that it is very close to zero except in a thin boundary
layer close to x = 0.

Its thickness δ scales linearly with ε. To see this in a more formal way we introduce the
inner variables X = x/δ and Y (X) = y(x) and rewrite the equation as

ε

δ2
Y ′′(X) +

e−δX

δ
Y ′(X)− eY (X) = 0 . (1)

The method of dominant balance tells us to choose δ = ε (or δ proportional to ε) so
that the first two terms balance, both become large of order 1/ε, and the third term
becomes much smaller, of order one.

2b) In the limit ε→ 0+ we get the outer equation

e−xy′ − ey = 0 ,

which we rewrite as
e−yy′ − ex = 0 ,

and integrate to get the solution

−e−y − ex = C1 .

We determine the integration constant from the boundary condition y(1) = −1,

C1 = −2e .

This gives the explicit outer solution

yout(x) = − ln(2e− ex) .
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2c) The inner equation is found from equation (1) in the limit δ = ε→ 0,

Y ′′(X) + Y ′(X) = 0 .

The solution is
Y (X) = C2 + C3e

−X .

The boundary condition y(0) = 1 gives one equation for the two integration constants,

C2 + C3 = 1 .

This gives the explicit inner solution

yin(x) = 1 + C3(e
−x
ε − 1) .

2d) The inner and outer solutions have to match in the limit ε → 0, x → 0, x/ε → +∞,
where

yout(x)→ − ln(2e− 1) , yin(x)→ 1− C3 .

The condition that these limits are equal determines the third integration constant,

C3 = 1 + ln(2e− 1) .

The matching solution, where the inner and outer solutions match, is

ymatch(x) = − ln(2e− 1) = 1− C3 .

The uniform solution is

yuniform(x) = yin(x) + yout(x)− ymatch(x) = (1 + ln(2e− 1)) e−
x
ε − ln(2e− ex) .

The dotted line in Figure 1 shows our approximate solution for ε = 0.1, compared
to the exact solution, which is the full drawn line. The exact solution was computed
numerically with the initial values y(1) = −1, y′(1) = 0.703.

Figure 2 shows the same comparison for ε = 0.01. The exact solution in this case was
computed numerically with initial values y(0) = 1, y′(0) = −246.45.

The good way to compute the numerical solution is to integrate in the direction in which
the rapidly varying solution is decreasing. If we try to integrate in the wrong direction,
it can be done in Maple with 40 digits precision and with the initial values

y(1) = −1 , y′(1) = 0.951 787 735 074 023 118 640 723 097 3 .

It is necessary then to specify y′(1) with a precision of 31 decimals (!) which can be
found by trial and error.

2e) The WKB method can not be used here because it applies only to equations that are
linear in y.
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Figur 1: Exact solution (full drawn line) and approximate solution (dotted line) for ε = 0.1.

Figur 2: Exact solution (full drawn line) and approximate solution (dotted line) for ε = 0.01.

3a) We get that

∂

∂t
F (s) = 2t F ′(s) ,

∂2

∂t2
F (s) = 4t2F ′′(s) + 2F ′(s) ,

∂

∂xk
F (s) = −2xk F

′(s) ,
∂2

∂x 2
k

F (s) = 4x 2
kF
′′(s)− 2F ′(s) , k = 1, 2, . . . , d .
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Hence, (
∂2

∂t2
−∇2

)
F (s) = 4sF ′′(s) + 2(d+ 1)F ′(s) ,

and the wave equation takes the form

F ′′(s)

F ′(s)
+
d+ 1

2s
= 0 .

Integration gives that

lnF ′(s) = −d+ 1

2
ln s+ C1 , F ′(s) = C2 s

− d+1
2 .

If d 6= 1 then

F (s) = C3 s
− d−1

2 + C4 .

If d = 1 then
F (s) = C2 ln s+ C5 ,

with constants C1, C2, C3, C4, C5.

3b) In the case d = 1 the wave equation is(
∂2

∂t2
− ∂2

∂x2

)
φ(t, x) =

(
∂

∂t
+

∂

∂x

)(
∂

∂t
− ∂

∂x

)
φ(t, x) = 0 .

If we define

f1(t, x) =

(
∂

∂t
− ∂

∂x

)
φ(t, x) ,

then the equation is (
∂

∂t
+

∂

∂x

)
f1(t, x) = 0 ,

which has the general solution

f1(t, x) = f2(t− x) .

Next, φ(t, x) is a solution of the inhomogeneous equation(
∂

∂t
− ∂

∂x

)
φ(t, x) = f2(t− x) .

The general solution of the corresponding homogeneous equation is

φ(t, x) = g(t+ x) .

A special solution of the inhomogeneous equation is φ(t, x) = f(t− x), where(
∂

∂t
− ∂

∂x

)
f(t− x) = 2f ′(t− x) = f2(t− x) .

Hence the general solution of the inhomogeneous equation is

φ(t, x) = f(t− x) + g(t+ x) .

Under point 3a) we found the special solution

F (s) = C2 ln s+ C5 = C2 ln(t2 − x2) + C5 = C2 (ln(t− x) + ln(t+ x)) + C5 ,

which is of the general form f(t− x) + g(t+ x).
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