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la) A set of equations of the form

i‘j(t) = fj(iEl(t),:EQ(t),...,l‘n(t)) , j=12...,n,

is autonomous when the functions f; have no explicit dependence on ¢, only an implicit
dependence on t through the ¢-dependent variables z;(t).

A non-autonomous set of equations, of the form

() = (10,500, mn() s G = 1,2, m,
can be made autonomous by the inclusion of the extra equation

t=1. (1)

1b) Hamilton’s equations
. OH . OH
q; = apj ) p; =

are autonomous if the Hamiltonian H does not depend explicitly on ¢, that is, if
H=H(q1,q2, -, qnsP1,P2s -+, Pn) -
Then the time derivative of H is
= \9; P; = \9q; dp;  Ip; Oy
In other words, H is a constant of motion.

Ic) Write the equations as & = f.(z,y), ¥ = fy(z,y). There are two fixed points, (z,y) = (1,0)
and (z,y) = (—1,0). To determine their stability we look at the eigenvalues of the

derivative matrix
Ofs  Ofe 0 1
M = ox y — ]

The trace and determinant of M are 7 =Tr M =0, A =det M = —2z.
At the fixed point (z,y) = (1,0) we have that

0 1
= o)

and 7 =0, A = —2. An eigenvalue ) is a root of the characteristic equation

det(M — X)) =X —7A+A=X-2=0.



The eigenvalues are A+ = ++/2, and the corresponding eigenvectors are

A

The linearized equations of motion close to the fixed point are

(5) -2 ().

€y €y

valid for © = 1+4¢€,, y = €,, where the €’s are small (infinitesimal) deviations. The general
solution is

Eac(t)> Ayt At V2t ( 1 ) V2t ( 1 )
= Vi+eco V. = +c_ )
<6y('[j) cy€ + c_¢€ cie \/i c_¢ _\/§

with arbitrary real coefficients c¢. The fixed point is a saddle point, since it has an
unstable direction V. and a stable direction V_.

At the fixed point (z,y) = (—1,0) we have that

0 1
=% 0);
and 7 = 0, A = 2. The characteristic equation is
M—TA+A=X+2=0.

The eigenvalues are Ay = +iv/2, and the corresponding eigenvectors are

(L)

The fixed point is marginally stable, since the eigenvalues are purely imaginary. The
linearized equations of motion close to the fixed point have the general solution

ex(t)) _ Ayt w At _ ivae (1
<6y(t)) =ce" Vi 4 e V_—QRe{ce W) [

where c¢ is now an arbitrary complex coefficient, ¢ = a + ib with a and b real. Thus

(Ew(”> — 9Re {(a +ib) (cos(v2 1) + isin(vZ 1)) (1\1@)}

=z (_ g ) ()

The motion is in the clockwise direction. The fixed point looks like a centre, since the
orbits of the linearized equations of motion are periodic. In order to confirm that it really
is a centre, with periodic solutions of the full nonlinear equations of motion, we look for
a counstant of motion.



1d)

We note that the equations of motion are of Hamiltonian form,

. OH ., _ oH
xTr = = —_— = — [ —
y 8y 3 y ax ?
with Hamiltonian ) 5
Y T
H=Z — — .
9 3 +x

Hence H is a constant of motion, and the exact orbits are level curves of H. The fixed
point (—1,0) is a local minimum of H, since the first order derivatives

OH

OH _ on
— 5 =

— 1

vanish there, and the second derivative matrix (the Hessian)

92H  0°H

(8172 aw;,) _ (‘25’” 0)
8?H  9%H | T
dydr  Oy? 0 1

is positive definite when z < 0. This implies that the orbits around the fixed point (—1,0)
are closed, and it completes the proof that this fixed point is a centre.

At the fixed point (1,0) the value of the Hamiltonian is H = 2/3. The equation
2 3
YT L
T2 373

defines the homoclinic orbit. It starts out from the fixed point at time — —oo in the
unstable direction —V,, asymptotically as

=0 RIS Y

y(t) ) t=—c0 \ 0 TSy 2eV2(-n) |
where t; is some constant time. It goes once around the other fixed point (—1,0), and
returns to the same fixed point (1,0) at time ¢ — +o0 in the stable direction V_, asymp-

totically as
:E(t) - 1 _ e*\/i(t*tz) V. = 1— e*\/i(tftz)
y(t) ) t=+o00 \O - V2eV2(t—t2) |7

where ¢9 is some other constant time.



le)

Figure 1: Phase portrait. Shows that the fixed point (—1,0) is a centre, whereas (1,0) is a
saddle point, with a homoclinic orbit leaving it at ¢ = —oo and returning at ¢ = +oc.

1f) A fixed singularity of a solution of a differential equation is at a value of the independent
variable (¢ in the present case) where some coefficient in the equation is singular.

The set of equations # =y, = 22 — 1 has no fixed singularity.

A spontaneous (movable) singularity is a singularity of the solution at a value of ¢ where
the equation is not singular.

Now assume that & =y, § = 2? — 1, and that we start at some t = ¢, with
z(to) =zo > 1, y(to) =40 > 0.

Then we know that
i(t) >y,  yt)>zy-1

for all ¢ > ¢9. Hence we conclude that z(t) = 400 and y(t) — +o00 as t increases, either
in the limit £ — +o00 or perhaps already at some finite value of .

Next, we use the fact that the Hamiltonian H(x,y) has a constant value Hy = H (xq, yo)-

It follows that
223
y:\/§—2$+2H0.

For z sufficiently large we have for example that

. £3/2

Hence we get a lower limit for z(¢) by integrating the equation



which we rewrite as

The general solution is

or equivalently,
16

(t—t3)2"’
where {3 is an integration constant. Remember that this was a lower limit to the exact
solution, which must therefore blow up at some t < t¢3.

z(t) =

This proves that every solution entering the region x > 1, ¥y > 0 has a spontaneous
singularity.

Differentiating Cauchy’s integral formula n times we get that

!
(), — M f()
P = o F Y =y
Take f(z) = e* and z = 0, then we get that
LN VR
271 C tn+1

To find the saddle point sy we solve the equation

1o (2) (2-5) s 1= 1) =0

The solution is s = sg = 1.
The second derivative is
1 1\? 1
d"(s)=(n+1) [g'(s) (1 - ) + QQS)] =(n+1)g(s)|(n+1) (1 — ) + =

S

hence
g =mn+1)g(l)=(n+1)e" >0.

If we write s = u + iv with « and v real, then

d?g 0% B 0%g 0%g

" _49_99 _ __99
97(s) = ds?  du?2  O(iv)? ov?

It follows that
g
Ou?

__ P
o2
When we go along the real axis in the complex s plane, g(s) is real and has a minimum

at s = 1. At s = 1 we may go in a direction perpendicular to the real axis, then g(s)
remains real to first and second order in s — 1, and has a maximum at s = 1, with a second

=4¢"1)=(n+1)e"™>0.

s=1

s=1



3a)

3b)

derivative going to —oo as n — 400. According to the method of steepest descent, we
should take the the curve C' to go through s = 1, perpendicular to the real axis. The main
contribution to the integral comes from a small part of the curve close to s = 1. Hence
we write s = 1 + iv, then we introduce a small € > 0 and write

1 1 € 1 € entl ol (ntl)v
S [ idvglriw) = [ @&
n " 2mi(n+ 1)n /61 ve(l+iv) = oo / T+ )t

Here v is small, and the given formula

- s
14y = eiv—(”;) Fo ol Gt

becomes useful. We get that

1 entl €  (nt1)v? entl o  (n41)0?
o~ / dv e 2~ / dve z .
n! 2r(n+1)" ) . 2r(n+1)" J_

Changing integration variable to w = v +/(n + 1)/2 we get that

1 en+1 o) i en+1
— ~ dwe™ =

nt \2n+ D) (n+1)" J 0o V2r (n+1)n+s

This is Stirling’s formula.

The singularities at finite x are where sinxz = 0, that is, x = nw for n = 0, £1,+£2,.. .,
and where cosz = 0, that is, z = (n + %)7‘( forn=0,+1,42,....

There must be a very bad singularity at infinity, since there are infinitely many singular-
ities in any neighbourhood of infinity. So we forget about infinity and consider only the
singularities at finite x.

These are all regular singular points, since the singularities of the coefficients 1/ sinz and
1/ cosz are just simple poles.

Consider the singularity at z = nw. Write x = nm + £ where £ is small. Then
& ¢
sinz = sin(nm) cos £ + cos(nm)siné = (—1)"siné = (—1)"¢ (1 % + 120 +.. ) ,
and
L _ o qpeif, € ¢ e ¢ ’
sz~ U §<1+6_120+ T\ e Tt T
1 & et
=(-D)"= (14> 4+ =
(=1) ¢ ( + 6 + 360 +
Also

cosxz = cos(nm) cos€ — sin(nw)siné = (—=1)" cos & = (—=1)" (1 5 +.. ) )



and

Loy (1+£2+...).

Cos & 2

Trying a power series solution

y(@) = apt*
P

we get the equation

k2 g (ko & TEMT?
Xk:ak[k(k—ng +(=1) k(g + %5+ 0 +)
§k+2
+(=1)" (5’“+2+...)] =0.

The sum over k should be over k = a,a+ 2, 0+ 4,a+ 6, ... for some « such that a, # 0.
In order to satisfy this equation in the limit ¢ — 0 we must require that

ag oo — 1+ (-1)"¢* 2 =0.
Thus « must satisfy the indicial equation
ala—1+(-1)"]1=0.

We have to distinguish between the two cases n even or n odd.

Assume first that n is even. Then the equation is

5 ko k 7£k+2 P €k+2
Zak[kf +k:<6+ 260 +...)+<§ +2+...>]:07 (2)
k

and the indicial equation is & = 0 with the unique solution & = 0. Hence, in equation (2)

we should sum over k£ = 0,2,4,6,.... The equation, written explicitly, is then
40,2 aq 9
4a2+a0+ 16(144-?"-? f-l-...:().

The terms shown vanish when we take ag arbitrary and

Further recursion relations determine successively ay for £ = 6,8, 10, .. ..

Unfortunately, this procedure gives only one solution, whereas a second order equation
must have two linearly independent solutions. We know what the second solution should
look like, it should have the form

y(z) = y2(7) + y1(z) Ing

with

yi(r) = Y a, )= > bt

k=0,2,4,... k=0,2.4,...



We have then that

(@) = shta) + P 4 (o) e
/@) = (o) + 2B 0 4 o) e

Define the differential operator

d2 1 d 1

L=y - < .
dz? +sin$ dz cosz
Then ) .
Ly=1L Z Ly 1 .
y y2+£y1+( 2] gsmx>y1+( y1) Ing

In order to get Ly = 0 we should require that y; satisfies the homogeneous equation
Ly, = 0, and that y, satisfies the inhomogeneous equation

Lo — 20 4 (1 1 2, L, 7¢? L
PETENT e fsing )T TN T 6T 360 gL
where the dots represent terms of order ¢4, €%, and so on. The power series expansions of
y1(z) and yo(x) give first equation (2) for the coefficients ag, and then the equation

5 ko gk: 7£k+2 k €k+2
b [kf +k<6+ 260 +..) (g +>]

k=024,...
k k42
_ gk & T
-3 ak[ okt —_—— +] (3)
k=024,

for the coefficients b;. The last equation more explicitly written out is

4bo 2 agp az  Tap\ .9
by + by + [ 16by + =2 = —day— D 4 (g - 22100
2+0+< RN )g I T A
To satisfy the two equations (2) and (3) we can take ag and by arbitrary, then
__% —__ %2 _ %
@=L MT T s
as before, and
b b() ap b bz bo a4 a9 70,0
= —— — Qa9 — — = ——————— —_—__ = — — .
2Ty YT12 032 2 96 5760

Further recursion relations determine successively a; and by for k = 6, 8,10, .. ..

Note that if we take ag = 0 and by # 0, we just recover the power series solution without
the logarithm. The logical choice in order to define a new solution is to take ag # 0 and
bp = 0.

Now to the case where n is odd. Then the equation is

Zak[k(k—Q)gk_Q—k(gg+7§;J(;2—|-..) (gk ’5k+2+...)]:o, (4)

k




and the indicial equation is a(a —2) = 0 with the two solutions & = 0 and o = 2. Hence,
in equation (4) we should sum over even k starting with either £ = 0 or £ = 2. The
equation, written explicitly, is then

4
_a0+(8a4—§2—a0>§2 .=0.

The terms shown vanish when we take ap = 0, a9 arbitrary, and

a2
a4 = — .

6

Further recursion relations determine successively a for £ = 6,8, 10, .. ..

Again we get only one solution, and we have to look for a second solution of the form

y(z) = y2(7) + y1(z) Ing

with

yi(e) = D att, @)= D bt

k=2,4.6,... k=0,2/4,...

In order to get Ly = 0 we should require that y; satisfies the homogeneous equation
Ly; = 0 (that is why we sum from £ = 2 instead of from k£ = 0), and that yy satisfies the
inhomogeneous equation

D=2y (L1 ——2’+ 2+1+7—§2+
RETENT 2 feing )T e £2 360 g

where the dots represent terms of order £*,¢5, and so on. The power series expansions of
y1(z) and yo(x) give the equation (4) for the coefficients a, and the equation

o gk 7€k+2 k £k+2
> bk[k(k—m —k(6+ 260 +..> (5 5 +>]

£=0,2,4,...

B b9 fk 7§k+2
= k:2z46 ...ak [—2(147 -1+ e ] (5)

for the coefficients b;. The last equation more explicitly written out is

4b
—bo+<864—32—>§2 :—2a2—|—< 6ay + )52
This gives that ag = 0, a9 is arbitrary, and
az
aqs = F y

as before. Then it gives that by = 2a9, bo is arbitrary, and

be by 3ay  az
YT % T16 4 48

Further recursion relations determine successively a; and b for k = 6,8, 10,.. ..



Note that instead of saying that ag is arbitrary and by = 2a2, we may turn it around and
say that by is arbitrary and ag = by/2. If we take by = 2a3 = 0 and by # 0, we just recover
the power series solution without the logarithm. Hence, the logical way of getting a new
solution is to take by = 2as # 0, but we may take by = 0.

So far the singularity at £ = nm. Consider now the singularity at z = (n + ). Write
z = (n+ 3)m + & where ¢ is small. Then

. . 1 1 .
sinz = sm((n + 2) 7r> cos& —|—cos(<n + 2) 7r> sin&

= (=1)"cos& = (—1)" (1 — 2+...) ,

2
and . e
(e ).
Also
1 . 1 .
cosx = cos((n—i— 2) 71') cos& — sm((n—i— 2) 7T) sin ¢
52
= —(=1)"siné = (-1)"*%¢ (1 -5t ) ,

and

1 :(_1)n+11<1+§2+...).

COS T ¢ 6

y(z) = are
k

Trying a power series solution

we get the equation

k+1
Xk:ak [/-c(/-c — )2 4 (—1)k (g’f—l + % + .. )
6

The sum over k should be over k = a,a+ 1,0+ 2,a+ 3, ... for some « such that a, # 0.
In order to satisfy this equation in the limit & — 0 we must require that

(1) (g’“ + ¢ + .. )] =0. (6)

agala—1)E272=0.
Thus « must satisfy the indicial equation
ala—1)=0,
with solutions o = 0 and &« = 1. The equation more explicitly written out is

(_1)71-&-1(105_1 + 2a9 + (6&3 + (_1)na2 + (_1)n+1 @) ¢

6
+ (12a4 + (=1)"2a3 + (—1)" %) Z24+...=0.

10



It gives that ag = as = 0, a; is arbitrary, and

ag

= (-2 cn oy
as ( ) 6+( )36 )

= (-1 n+1 43 -1 "+1ﬂ: -1 n+1a71.
ar = (-1 (S et 2

Further recursion relations determine successively ay for £ =5,6,7,....

Here again we get only one solution, and we have to consider solutions of the form

y(z) = y2(2) + y1(z) Ing

with

)= > af,  pE) = > k.

k=1,2,3,... k=0,1,2,3,...

In order to get Ly = 0 we should require that y; satisfies the homogeneous equation
Ly; = 0, and that yo satisfies the inhomogeneous equation

I 2 1 1 2 1 1 1 ¢
- £yl+(£2‘£smx>yl £yl+(£2_(_)(£+2+“'>)y“

where the dots represent terms of order &*,¢5, and so on. The power series expansions of
y1(z) and y2(z) give the equation (6) for the coefficients a, and the equation

fk—H

Zbk[ (k —1)¢k2 4 (1)%<g’f—1+2+...)+(—1)"+1(gk—1+'g€:+...)]
=S af-2te-ngr e e (¢4 S )] )

for the coefficients b;. The last equation more explicitly written out is

bo

(=1)" et + 26y + <6b3 + (=1)" (b2 — 6)) E4 ...

= —2a5 4 (—1)""ta; + (—4a3 + (=1)ntt <a2 + %)) E+... .
This gives that ag = a2 = a3 = 0, a; is arbitrary, and

:_1n+1a‘71
as = (=1) 36

as before. Then it gives that by = 0, by is arbitrary, and

by = —2a9 + (—1)”+1a1 = (—1)"+1a1 ,

2
by = =25+ (1" (a2 + ) =0,

Further recursion relations determine successively a; and b for £ = 4,5,6,.. ..

11



In the examination only the leading asymptotic behaviour at the singular points was asked
for. A sufficient answer is the following:

— For z = nm + £ with n an even integer and ¢ small we have either y(z) ~ 1 or
y(z) ~ Iné.

— For x = nm + ¢ with n an odd integer and ¢ small we have either y(z) ~ &2 or
y(z) ~ 2+ 2 Iné.

~ For x = (n + %)7‘( + £ with n an even or odd integer and £ small we have either
y(z) ~ & or y(z) ~ {(1 4 Ing).
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