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Norwegian University of Science and Technology
Department of Physics

Subject contact during examination:
Name: Patrick Espy

Tel: 4138 65 78 (mob)

EXAMINATION IN FY3201 ATMOSPHERIC PHYSICS AND CLIMATE CHANGE
Faculty for Natural Sciences and Technology
30 Nov 2009
Time: 09:00-13:00

Number of pages: 2
Permitted help sources: 1 side of an AS sheet with printed or handwritten formulas permitted

Bi-lingual dictionary permitted
Approved calculators are permitted

You may take:
Molar mass of water vapour ~18 kg/kmole £=9.8 m s” and constant in z
Molar mass of dry air ~29 kg/kmole 1 hPa=10* Pa=10* N m*
273K=0°C Scale Height, H=R-T/g

Values for dry air:  C,=1004 J -K"-kg'l C=718 J-K"-kg'l R4=2871 -K'l-kg']
y=GCp/C, k=Ra/Cy Ry=C,—C, T4=9.8K/km

Answer all 5 questions (and good luck!):

SOLUTIONS
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1) Atmospheric structure (20 %):

a) A meteorological station is located on land 50 m below sea level. If this
station measures the surface pressure to be 1020 hPa, the mean
temperature for the layer between the surface (1020 hPa) and 1000 hPa to
be 15 C, and the mean temperature for the 1000 to 500 hPa layer to be 0 C,
compute the height of the 500 hPa pressure level above sea level. Assume
the air is dry. (15%)

b) Assume that these temperatures are the temperatures at the centre of each
layer. What is the stability of the atmosphere with regard to vertical

motions and why is it stable or unstable? Again assume the air is dry. (5%)

a} Here we start with the hydrostatic equation:

9
azp =—pg
And the perfect gas law:
= P
PRT
To get a relation between p and T, the hypsometric equation:
dp  gdz
p RT

If' T, normally a function of z, is taken as the average temperature in the layer
between altitudes z; and z;, we can integrate this over the layer and get the

hypsometric equation:
n p2Y_ gl(z2-zl)
pl )~ RT

For the first layer between the surface at z;=-50m, p;=1020 hPa and p2=1000
hPa with the average temperature of 15C=(273+15)K=288K, we can solve for
z2=117m above sea level (since we have taken z;=-50m).

Now, we can repeat the process for the layer between z;=117m, p,=1000 hPa,
and p3=300 hPa with a mean temperature T=0C=273K. This gives z3=5658 m above
z;, which we took to be -50m in the calculation. Thus, this is the height above sea
level. If one solves the thickness of the lower layer as dZ,, and the thickness of the
upper layer as dZ; and adds them, this is the height above the ground. We then have
to subtract 50 m from dZ; to get the height above sea level.

b) The middle of the top layer is Y:*(5658-117)+117=2888m, middle of the
bottom is %[117- (-30)]+(-50)=34 m, giving an altitude difference of 2.85km. The
temperature lapse rate is therefore the temperature difference divided by the altitude
difference, or -(288-273K)/2.85 km = 5.2 K/km.

Since the dry adiabatic lapse rate is 9.8 K/km, it means that an air parcel
moving upward would cool 9.8 K every km, or about 30 K as it went from the middle
of the bottom layer to the middle of the top. Thus it would be 260 K, or -13 C and be
surrounded by warmer air at -0C. It would therefore be less buoyant than the
surrounding air and sink back towards its starting point and return the atmosphere to
the same state it started. Thus, the atmosphere is stable.
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2) Radiation and atmospheric structure (20 %)
A parallel light beam from the sun is incident on an atmosphere which consists
of a gas with a constant absorption coefficient, k;. If the atmosphere is
isothermal, use the definition of optical depth and the fundamental

atmospheric structure equations to show that the optical depth has a linear
relationship to pressure.

Here we just use the definition of optical depth:

(z) = fk o(z) dz
And then take into account the fact that k, is independent of altitude, z, to write:
r&):kfdzuk

Now, we can use the hydrostatic equation:

e .
azp =-pg
To solve for p. This gives:
0
e 32 P(?)
el g
Which, when substituted in for t gives:
= kp(z)
4

Thus, tis linearly dependent upon p
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3) Radiation transfer (20 %)

The Schwarzschild radiation transfer equation may be integrated to give the
radiance at any altitude, z, as follows:

LI(Z) = LL .e‘(r,f!‘;)/# _ IJ'V(TI)_ef(r'—r__)fﬂ jdi

Ty

Lf(z) = wa _er,-f.u _ J;JV(T') e—(r'—f:)f'u i dt

Ty
A short wavelength parallel beam of solar radiation of radiance, LJ’Wo is
incident at the top of an isothermal atmosphere at a zenith angle of 0° (p=-1).
It is absorbed by the gas which has a density, p(z), and an absorption
coefficient, ky, that is independent of altitmde, Select the terms ofthe
equations you would need to describe the radiance as a function of altitude

(assume that there is no scatter or albedo and a surface temperature ~300K)
(5%).

Using this, show that the absorption per unit volume (i.e., dLﬂ/dz) reaches a
maximum at the level where the optical depth is unity. (15%)

For short wavelengths, the source terms J(7’) in the integrated Schwarzschild
equations are ~0. Similarly, the amount of short wavelength radiation emitted from
the surface at a temperature of 288K is negligible. Since there is no albedo or
Scattering, the upward radiation terms, L', , can be neglected. This leaves only the
term.

L(z)=L} -e™'

Now, differentiating this to give the absorption per unit volume yields:

o -
Absorption Lo [az T(Z)] ¢

Unit Volume 71

Now we can put in the definition of
(z)= fk p(z)dz

(-#)

And the fact that ky=constant and for an isothermal atmosphere p(z) :=p0 e

)

Wz)=-kp0He

To give:

And therefore:

Absorption Lok pOe e
Unit_Volume ~ M

We can identify the terms k,poe™ as 1(2), and re-write this as:



X
Absorption Lot e(jl ]
Unit Volume — Hp

()

0 Absorption _ loe lote

Differentiating this with respect to 1(z) gives:

()

0t unit_volume Hu W H

We can set this equal to zero and solve for T to find T(zpay)

Wzmay) =-p=-(-1)=1

Therefore, the maximum absorptionf/unit volume is maximum where =1
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4) Climate and modelling (20 %)

a) Briefly describe the difference between weather and climate? (5%)

b) What is meant by a radiative equilibrium temperature? (5 %)

¢) In atmospheric models (for example climate models), how does one treat
physical or chemical processes that have a scale size smaller than the
model grid size? (5%)

d) In aradiative transfer model, what is the “two-stream” approximation?
(5%)

a) Weather occurs on short time scales compared to the phenomenon we are studying.
Climate occurs on time scales much longer than the phenomenon we are studying.
One could say that weather is what we have today, climate is what we expected to
have today based on the average weather over many years.

b) When the radiative energy absorbed = radiative energy emitted. If we assume that
the atmosphere radiates as a grey body, the Planck formula may be used to determine
the temperature at which one must be to radiate that much energy. This temperature
is the radiative equilibrium temperature.

¢) We actually have to create a sub-model, called a parameterization, of the small-
scale process that is in terms of the grid variables. For example, the gravity wave
Jforcing is parameterized as the difference between the wind speed and the average

d) In a radiative transfer model, the interaction of the light with the atmosphere
through absorption and emission of radiation must be integrated over zenith angle (or
path length) and frequency. However, frequencies with high probability for
interaction will not reach the next layer if the path is too long (ie, far off the zenith).
These have a different average angle (closer to the vertical, shortest path) than those
with a low probability for interaction which require the long path (large zenith
angles) to interact. Thus, the integrals are not separable and cannot be
approximated.

The two stream approximation makes use of the fuct that only frequencies with where
the change in optical depth between the two layers is close to 1 will have any
significant interaction. Thus, by restricting At=1 we can define an effective zenith
angle, ut, where the interaction integrals maximize. This then says the integral over all
zenith angles has the same effect as a parallel beam at this effective zenith angle, and
the entire integral is replaced by two streams, one upward and one downward, at this
effective zenith angle.
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5) Atmospheric Structure and Thermodynamics (20 %)

An air parcel’s entropy, S, is constant for an adiabatic (isentropic) process
(8q=0). However, during a cloud-free evening, long wavelength heat transfer
causes an air parcel to descend from 900 to 910 hPa, and its entropy to
decrease by 15 J- K™ kg If its initial temperature is 280 K, determine:

a) The parcel’s final temperature (10%), and
b) The parcel’s final potential temperature, 0 (10%).

Here the solution relies on the relationship between entropy and potential
temperature. We can take P, to be anything as long as we keep it fixed. Here I have
taken it to be 1000hPa. At the initial position at P;=900hPa:

S1=CpIn(61) +So

Where

13

_ Po
01 =177 (pz)

Similarly, at position 2, where P,=910hPa:
§2:=CpIn(62) + So

The difference in entropy, dS= S»-S;, which is given as ~15 JK' kg, is therefore:

PoY
ds = Cpn(62) - Cp h{n (ﬁj J

Given that k=R/C,, we can solve for & as:

) Po
[d5+ II(TI)QH-RIA'{WJ]

Cp

02 :=e
Just substitute in:
T/=280K, C,=1004 JK ' kg', R=287 JK "' kg, dS=-15 J.K ' kg', P;=900hPa to get
6,=284.3K

From the definition of potential temperature:

Po )
02=T72 (ﬁ]

And with P,=910 hPa, we get a temperature T:=276.7 K





