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Norwegian University of Science and Technology 
Department of Physics 
 

Subject contact during examination: 
  Name:   Patrick Espy  
  Tel:  41 38 65 78 (mob)  
 
EXAMINATION IN FY3201 ATMOSPHERIC PHYSICS AND CLIMATE CHANGE 

Faculty for Natural Sciences and Technology 
03 June 2011 

Time: 15:00-19:00 
 
Number of pages: 9 
 
Permitted help sources: 1 side of an A5 sheet with printed or handwritten formulas permitted 
   Bi-lingual dictionary permitted 
   Calculators meeting NTNU examination criteria are permitted 
 
 

 

You may take: 

   Molar mass of water vapour ~18 kg/kmole  g=9.8 m s-2 and constant in z 
   Molar mass of dry air   ~29 kg/kmole 1 hPa = 102 Pa =102 N m-2  
   273 K = 0 oC  Latent heat of vaporization water = Lv=2.6x106 J kg-1    
   Scale Height, H=RT/g 
   Values for dry air: Cp=1004 JK-1kg-1 Cv=718 JK-1kg-1 Rd=287 JK-1kg-1 
    = Cp / Cv  = Rd / Cp Rd=Cp – Cv  da=9.8 K/km 
 
 

Answer all questions (and good luck!): 
 
 

Solutions
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1) (25%)  Weather balloons typically burst when they reach an atmospheric 
pressure of 100 hPa.  Meteorologists release balloons at the Equator, where the 
atmosphere has a uniform, isothermal temperature of 35 oC, and at Svalbard, 
where the atmosphere has a uniform temperature of -35 oC.  Assume dry air, and 
that the identical balloons start at 0 m where the surface air pressure at both 
sites is 1000 hPa. 

a) At what height above the surface does each balloon burst?  (10 %) 

This is a relatively easy on to get them started.  Here, as we have done many times in 
class, we start with the hydrostatic equation: 




z

p  g
 

And the perfect gas law: 

 := 
p

R T  

To get a relation between p and T, the hypsometric equation: 


dp
p


g dz
R T  

Since T, normally a function of z, is taken as isothermal in this case,  we can integrate 
this to get the hypsometric equation: 







ln

p2
p1


g ( )z2 z1

R T  

Then we just need to solve for the burst altitude, z2 and substitute in the values: 

 := Z2 Z1
Rd T 






ln

P1
P2

g
 

And  Z1:=0; Rd:=287; P1:=1000; P2:=100; g:= 9.8; 
Gives for Svalbard, Ts=238 K, that Z2 = 16.049 km 
And for the Equator, Te=308 K, that Z2 = 20.729 km 
This, and the fact that balloon material becomes more brittle in cold temperatures, 
explains why Antarctic stations seldom report radiosonde data above 15 km, 
 
b) If the only wind was due to the temperature gradient between the Pole and 
the Equator, in which directions would the balloons drift?  Why? (10 %) 

The above calculations show that at any altitude, there is a pressure gradient with 
higher pressures at the equator than at the pole.  This will cause the balloons to drift 
poleward.  However, over long distances the Coriolis force will cause them to turn 
towards the east.  They get ½ credit for poleward, and full credit if they get the 
Coriolis force term correct. 
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c) Assuming the dry He inside each of the balloons does not exchange heat with 
its surroundings, what is the temperature of the gas in each balloon when it 
bursts? For Helium, take RHe= 2077 JK-1kg-1 and Cp=5190 JK-1kg-1 (5 %) 

Here we can treat the balloon as an air packet that rises adiabatically (ho heat 
exchange, including radiative). The potential temperature of the He inside the balloon 
is the same as the ground temperature if we take the reference to be 1000 hPa.  At the 
burst pressure altitude pressure, 100 hPa, the temperature of the helium, Tp, is: 

 := Tp  







P
Po



 

The catch is that =R/Cp is determined by the values for helium, so =0.40.  
Substituting in for P=100 hPa, Po=1000 hPa, we get: 
Equator:  equator=308 K, Tp = 122 K.  Pole:  pole=238K and Tp=95K. 
 
Some might be tempted to use the fact that the adiabatic lapse rate a =g/Cp can be 
used with a linear temperature profile of the parcel: 

Tp To
g Z
Cp  

However, this is only true if the parcel is in hydrostatic equilibrium at every point (the 
adiabatic lapse rate, a =g/Cp, was derived using hydrostatic equilibrium). Thus, this 
is only true if the environmental lapse rate is adiabatic as well.  Here we have the 
environmental temperature profile is T=To=constant.  That yields that 
P=Po*exp(-Z*g/(Rd*To).  If we put this into our expression for Tp derived from the 
fact that its potential temperature is constant: 

Tp  







P
Po



 

With o=To, we get: 

 := Tp To e








Z g
Cp To

 
And if we do a Taylor’s series expansion about small Z, we re recover to first order: 

Tp  To
g

Cp
Z ( )O Z2  

Not very accurate over 16 to 20 km! 
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2) (25%) Volcanic ash of 0.1 (1=10-6m) radius is distributed with a constant mass 
mixing ratio of 3% in the lowest 10 km of an isothermal atmosphere of temperature 
270 K.  The atmospheric density at the surface is 1.29 kgm-3, and the scale height for 
the atmosphere is 8 km. For 500 nm light, take the attenuation coefficient of clear air 
to be 0, and for ash to be 0.01 m2kg-1.  

a) At ground level, what is the optical depth of 500 nm light for the sun directly 
overhead? (8%) 

Since it is an isothermal atmosphere with a given scale height, the density of the ash 
is given by , the ash’s mass mixing ration, times the atmospheric density, or: 

 :=    e








z
H

 

This can be derived from substituting the perfect gas law into the hydrostatic equation 
and integrating to get P as a function of z, and then using perfect gas law and the 
definition of H to solve for  as above.  However, they should be able to just write 
down the above expression.  Next, they just need to use the definition of optical depth, 
and realize they only need to integrate to 10 km. 

 :=  d





0

10000

  e








z
H

k z  

Or  :=     k H e






10000

1
H

  k H  

Substituting in the values: 
:=  .03  

:=  1.29  

:= H 8000  

:= k .01  

Gives  = 2.21 

b) What is the atmospheric transmission in this case? (3%) 

The transmission is given by:  
 := T e

( )
 

Or, here, with  = 2.21, the atmospheric transmission is 11% (89% absorption). That 
is why the pictures from Iceland look like it is the middle of the night! 

c) At what altitude does the optical depth = 1? (8%) 

This one comes from the definition of the optical depth as above. Integrating from Z1 
to the top of the ask cloud, the point where  = 1 = 1: 

 :=     k H e








ZT
H

  k H e








Z1
H

 

 

Solving for Z1 gives: 



 Page 5 of 9

 := Z1 











ln
   k H e









ZT
H

  k H
H  

And substituting: 
:=  .03  

:=  1.29  

:= H 8000  

:=  1  

:= k .01  

:= ZT 10000  

Gives Z1= 3.96 km. 
Though not requested, the transmission at this altitude would be 37% (63% 
absorption), and much brighter! 

d) If the particle radius increased to 3  with the same mass mixing ratio, how 
would the extinction coefficient, transmission and asymmetry factor (ratio of 
forward to backward scatter) change for 500 nm light? (6%) 

Here they should realize that they have been dealing with Rayleigh scatter since the 
wavelength =500nm = 0.5, is much larger than the particle radius, R=0.1.  This 
is characterized by a scattering cross section much smaller than the geometric cross 
sectional area of the particle as well as equal forward and backward scatter, giving 
an asymmetry factor of 1.   

If the radius increases to larger than the wavelength, then the scattering shifts 
to the Mie regime.  In doing so, the scattering cross section will increase faster than 
R2 to a level larger than the geometric cross sectional area of the particle. In fact, 
over most of the Rayleigh range the cross section goes as the 6th power of the radius. 
If the mass density of particles remains constant, which it does here, one will find 1) a 
larger extinction coefficient (which grows as R3), 2) a correspondingly lower 
transmission, and 3) a preference for forward scattering so that the asymmetry factor 
becomes greater than one 

Unfortunately there was a typo here in that 0.1 should have been 0.01.  At 
0.1 the scattering is at the limit of the Rayleigh range, and the growth of the cross 
section is slower than R6. In fact, for the numbers given, the growth will not 
compensate for the fact that the mass per particle grows as R3, and the extinction 
coefficient will actually decrease slightly (leading to an increase of transmission)! 
Students who managed to write down the Rayleigh scattering curve on their notes 
might get this result.  However, they must still mention that the cross section grows 
faster than R2 as one goes from Rayleigh to Mie scatter. 
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3)  (25 %) A dry air parcel is raised adiabatically 2 km from a pressure, 
Po=1000 hPa and a temperature of 285 K, to a pressure, P=783 hPa. 

a) What is the temperature of the air parcel at 783 hPa? (5%) 

Since all motion is stated to be adiabatic, then the potential temperature that the 
parcel has at the starting point is maintained as it ascends.  The potential temperature 
is: 

 :=  T 







Po
P



 

And at P=Po and T = To, o = To, or 285 K.  At P = 785 hPa, T may be found from: 

 := Tp  







P
Po



 

And with  = Rd/Cp = 0.286, Po = 1000 hPa, P= 785 hPa and o=285K, that gives  
Tp = 266 K. 

b) If the atmospheric pressure as a function of altitude is given by the 
expression: 
               P = Po(1 – z),  where = 0.02 km-1, and =6. 
What is the temperature of the air surrounding the parcel at 783 hPa? (9%) 

Here one must use the hydrostatic equation to find the density as a function of 
altitude, z.  This is: 




z

P g   

Performing the differentiation and solving for  gives: 

 := 
Po ( )1  z   

g ( )1  z  

From the perfect gas law 
P  Rd Ta  

Given the expressions for P and , we can solve for the atmospheric temperature, Ta: 

Ta
P

 Rd  

Or 

 := Ta
g ( )1  z
  Rd  

Remembering to convert  into m-1 (since the units must be compatible with g), the 
values given are: 

:= Rd 287  

:= g 9.8  

:= Po 1000  

:= z 2000  

:=  6  

:=  .00002  
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Which gives Ta = 273 K.  Note that this gives the temperature at 0 m as 285 K, as it 
was given.  A quick check like that would catch any unit problems and check your 
maths on the calculation of Ta. 

c) Are these atmospheric conditions stable or unstable with respect to vertical 
motion? Why? (3%) 

This should be easy.  We have seen that a parcel raised 2 km has a temperature of 
266 K, but the air surrounding it has a temperature of 273 K.  So the parcel is colder, 
and therefore denser, than the surrounding air, and it will sink back to its starting 
point.  If a student has not been able to calculate the temperatures correctly, then if 
they interpret the results they have correctly, and give the correct explanation, they 
should receive full credit for this answer.   

d) If the air parcel contains moisture that condenses as it ascends, will the air 
parcel be warmer or colder than a corresponding dry parcel? Why? (3%) 

Again, this should be easy.  The condensing water will release latent heat of 
vaporization which will heat the parcel. Thus, a moist air parcel with condensing 
water will be warmer than a corresponding dry parcel. 

e) If the air parcel contains water, what mass mixing ratio of water must 
condense during its ascent in order to change the parcel air temperature by 
10 K? (Assume the atmospheric mass is the mass of dry air.) (5%) 

This should also be relatively easy.  The condensing water gives off latent heat, which 
will be the energy source heating the parcel.  The units of latent heat for water,  
Lv=2.6x106 J kg-1, tell you how many Joules of heat will be released for every kg of 
water condensed.  Similarly, the units of heat capacity for air, Cp=1004 JK-1kg-1, tell 
you how many Joules of heat will raise each kg of air one K.  Putting these together, 
we have: 

Lvmwater = CpMairT 
Note, we use Cp since the condensation is taking place with no walls, hence the 
volume can change but the pressure will be constant.  We are told to take Mair as the 
mass of dry air, Md. Given the temperature increase of 10 K, we can solve for 
mwater/Mair = mwater/Md =TCp/Lv, and get = mwater/Md=0.004.  This can also be 
expressed as 4 g/kg.  
Note, if this much water condensed, the parcel would be warmer than the air mass 
around it, and the atmosphere would be unstable with respect to vertical motions. 
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4)  Short Answers (25 %) 

a) What are the most important optical properties of a gas that allow it to create 
a greenhouse effect? (4 %) 

Very concisely: It must transmit at the short, visible, wavelengths where the Sun is 
putting the heat into the planet, and it must absorb at long wavelengths where the 
planet is radiating away energy. 

b) With the addition of a greenhouse gas to the atmosphere, briefly describe the 
process by which the lower atmosphere warms. (4%) 

The Earth’s long-wavelength radiation is absorbedby the greenhouse gas which re-
radiates the energy.  Approximately ½ of it is returned back to the surface to create 
additional surface heating which warms the lower atmosphere via conduction and 
convection 

c) What is meant by a radiative equilibrium temperature? (4 %) 

The radiative equilibrium temperature is the temperature a body will maintain at the 
point where the energy it radiates away is equal to radiative energy it receives.   

d) If the greenhouse effect produces a warming in the troposphere, why is there 
a net 2 K/day radiative cooling in the upper troposphere? (5%) 

This follows from the definition of radiative equilibrium temperature. The radiative 
heating or cooling rate is just the difference between these numbers, input-output, 
which is 0 when it is in radiative equilibrium. If it receives additional, non-radiative 
energy, for example from latent heat driven by convection, then its temperature will 
increase to radiate away this extra energy. Thus, since it is radiating more energy 
than it receives from radiation, there will be a net difference in the “radiative energy 
in” – “radiative energy out”, and the negative difference is the cooling rate.  Hence, 
a 2K/day cooling indicates that there is another, non-radiative process occurring in 
the upper troposphere. 
Again, the better student should be able to say that the radiative temperature gradient 
in an atmosphere is greater than the adiabatic temperature gradient. Thus, convective 
overturning would be expected and the upper troposphere would have heat from 
below advected into it.  This would also cause condensation and release of latent 
heat, providing another, non-radiative heat source for the upper troposphere that 
would increase its temperature above that of radiative equilibrium.  The better 
student would also hasten to point out that the total energy balances, and that the 
displacement from radiative equilibrium is like a spring, and there is a characteristic 
raditive relaxation time constant.  
 

e) In a radiative transfer model, what is the “two-stream” approximation? (4%) 

In a radiative transfer model, the interaction of the light with the atmosphere through 
absorption and emission of radiation must be integrated over zenith angle (or path 
length) and frequency. However, frequencies with high probability for interaction will 
not reach the next layer if the path is too long (ie, far off the zenith).  These have a 
different average angle (closer to the vertical, shortest path) than those with a low 
probability for interaction which require the long path (large zenith angles) to 
interact.  Thus, the integrals are not separable and cannot be approximated.   
The two stream approximation makes use of the fact that only frequencies with where 
the change in optical depth between the two layers is close to 1 will have any 
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significant interaction.  Thus, by restricting =1 we can define an effective zenith 
angle,, where the interaction integrals maximize.  This then says the integral over all 
zenith angles has the same effect as a parallel beam at this effective zenith angle, and 
the entire integral is replaced by two streams, one upward and one downward, at this 
effective zenith angle. 

f) Describe briefly the differences between the two most common numerical 
grid models. (4 %) 

The two main types of numerical grid models are Finite Difference Models, and 
Spectral Models.  In the first, the spatial derivatives in the differential equations of 
motion, continuity and energy are solved iteratively using a Taylor series expansion, 
and then using the finite difference between the grid variables as an approximation to 
the differentials.  The time differentials are solved again using a Taylor series 
expansion where the parameter at a future time is solved as a function of its current 
value and the value of its spatial derivatives (which are, in turn, solved as described 
above). 
In a spectral model, a Fourier or Spherical expansion is fit in a least/squares sense to 
the grid variables. This then gives a closed form expression as a function of latitude, 
longitude and sometimes altitude that approximates each variable, and these closed 
form expressions may be differentiated to yield the differentials used in the equations 
of motion, continuity and energy.  Frequently even in spectral models the vertical 
components are solved using finite differences.  The time evolution is also performed 
using a finite difference method, but now the spatial differentials are from the 
differentiation of the closed form expressions. 


