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Norwegian University of Science and Technology 
Department of Physics 
 
 
EXAMINATION IN FY3201/FY8902 ATMOSPHERIC PHYSICS AND CLIMATE CHANGE 

Faculty for Natural Sciences and Technology 
31 May 2013 

Time: 09:00-13:00 
 
Number of pages: 8 
 
Permitted help sources: 1 side of an A5 sheet with printed or handwritten formulas permitted 
   Bi-lingual dictionary permitted 
   All calculators permitted 
 
You may take: 

   Molar mass of water vapour: ~18 kg/kmole g=9.8 m s-2 and constant in z 
   Molar mass of dry air:   ~29 kg/kmole 1 hPa = 102 Pa =102 N m-2  
   273.15 K = 0 oC     Scale Height: H=RT/g 
   Stefan–Boltzmann constant:  = 5.67×10−8 Wm−2K−4 
   Solar constant at Earth’s orbit (1 au) = 1367 Wm−2 
   Latent heat of vaporization water: Lv=2.5x106 J kg-1    
   Gas constant for water vapour: Rv=461 JK-1kg-1 
   Values for dry air: Cp=1004 JK-1kg-1 Cv=718 JK-1kg-1 Rd=287 JK-1kg-1 
     = Cp / Cv  = Rd / Cp Rd=Cp – Cv  da=9.8 K/km 

   Clausius–Clapeyron relation:  
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Answer all questions (and good luck!): 
 

1) (20%)  The atmospheric pressure as a function of altitude is given by the expression: 
 
   P =Po(1-z/L) ,  where L = 8.5 km and Po=1000 hPa . 

 

a) At P=950 hPa, what is the atmospheric temperature and density (8%) 

So, we are given P(z) =Po(1-z/L), and using the hydrostatic equation, we can 

easily differentiate P to get the density (z): 


z

( )P z g  , to give:  := 
Po
g L  

To get the temperature one needs to use the perfect gas law: P(z)=(z)RT(z) to 

get:  := T
( )L z g

R . This is all we need to calculate z,  and T at any pressure 

level.   



 Page 2 of 8

For L=8500 m, Po=1000 hPa = 1x105 Pa and g=9.8 m/s2, we find  = 1.2 kg/m3 

(remember we have to use Pa, not hPa.  If this was not done, I deducted 2 points). 

We can find that P=950 hPa occurs at z=425 m.  This gives us the temperature, 

using R=287 JK-1kg-1, of T=275.7 K = 2.6C.  Note, one could also skip solving 

for z and just use the fact that T=P/(R), and use P = 950x102 Pa and 

 = 1.2 kg/m3 from above. 

 

b) A hot-air tourist balloon is at hydrostatic equilibrium at an altitude of 950 hPa. 
The balloon equipment (but not the air inside the balloon) weighs 600 kg. If the 
balloon volume is 3000 m3, what is the temperature of the air inside the balloon? 
(If you have not solved part A, assume the temperature at 950 hPa is 15 oC) (12%) 

 

This is directly from the homework.  We have to know that hydrostatic equilibrium 
implies: 

Mass of (balloon + air inside balloon) = Mass of environmental air at 
  the balloon altitude that occupies 
  the same volume as the balloon 

That is:  m + in V = eV 

Where m = mass of the balloon, in is the mass of air inside the balloon, V is the 
volume of the balloon, and e the mass of the environmental air (the air outside of 
the balloon) at the balloon altitude. We are given pressure, volume and 
temperature, and we know that the pressure inside the balloon is equal to the 
pressure outside.  So we should convert the densities into pressures and 
temperatures using the perfect gas law: 

   m + pV/(RTin) = pV/(RTe) 

Now, we just need to solve for our unknown Tin: 
1
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Which can be written: 

 := Tin
1
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1
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m R
p V

 

Given m = 600 kg, V = 3000 m3 and Te = 275.7 K from part a), we find that the 
temperature inside the balloon is Tin = 330.9 K = 57.7 C. 

If part a) was not done, and Te = 15 C = 288.1 K has been used, the air inside of 
the balloon would be Tin = 348.9 K = 75.5 C 
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2) (20%) The Voyager I spacecraft observed Titan, a moon of Saturn. It discovered a 
hydrocarbon aerosol layer at a pressure of 1000 hPa, where the atmospheric 
temperature was measured to be 88 K. Even though the surface temperature could not 
be measured, the surface pressure was measured to be 1500 hPa. For the dry Titan 
atmosphere, which is 80% nitrogen, the gas constant is RT=290 JK-1kg-1, 
CPT=1044 JK-1kg-1, and gT<<gEarth. 

a) Estimate the maximum surface temperature assuming the atmosphere is stable 
with respect to vertical motions. (7%) 

The maximum temperature at the surface for a stable atmosphere would be the 
adiabatic lapse rate (if it were higher, convective motions would develop and 
rapidly redistribute heat vertically until the lapse rate would adjust to the 
adiabatic lapse rate). Since we do not have P(z), we have to use the potential 
temperature equation.  Easiest is to use the reference pressure, Po = 1000 hPa 
where the temperature is 88 K. That means the potential temperature of a parcel 
at 1000 hPa is  = 88 K.  Then at a surface pressure P=1500 hPa, we have:  

T  

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



P
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

 
Where  = RT /CpT. For the values of RT and CpT given we calculate  = 0.278, 
and at P = 1500 hPa we get a temperature of Ts = 98.5 K. 

b) The true surface temperature was measured later by Voyager II to be 94 K. Do 
you expect convection in Titan’s atmosphere? Why or why not? (6%) 

We would not expect convective motions on Titan. From part a) we have shown 
that a parcel starting at the surface at a pressure of 98.5 K would cool to 88 K 
when it reached 1000 hPa.  However, the air at the surface is only 94 K, so if it 
ascends to 1000 hPa it will be proportionally cooler than 88 K.  Since it will be 
cooler and heavier than the surrounding air, it will tend to fall back to its 
starting position, and convection will cease. In fact, a parcel of air at the surface 
(T=94 K and Po=1500 hPa) has a potential temperature,  = 94 K (taking the 
reference pressure to be 1500 hPa).  It will keep this  as it ascends to 
P = 1000 hPa, and its temperature there will decrease to Tp = 84 K, cooler than 
the surrounding 88 K air. This latter calculation is not required, but won’t be 
penalized. The real key is to realize the atmospheric temperature gradient is 
constant, and the parcel changes its temperature as it moves vertically. So if you 
bring a parcel at T = 88 K down to the surface and it heats to 98.5 K, then if you 
start at the surface and bring a parcel of cooler surface air up, it will be cooler 
than 88 K. Since it is cooler than the surrounding air we have stability.  

c) Assuming isothermal conditions, how many scale heights above the surface was 
the hydrocarbon aerosol layer? (7%) 

Under isothermal conditions, we know that the scale height, H = RT/g, is 
constant.  Therefore the hydrostatic equation can be integrated to give: 

( )P z Po e






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Solving this for Zd/H in terms of the pressure of the dust layer, Pd = 1000 hPa and 

the surface pressure, Po = 1500 hPa, we get: 
Zd
H

 





ln

Pd
Po , or Zd/H = 0.41.  

That is, Zd = 0.41 scale heights.  
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3) (20 %) An air parcel at a pressure of 1000 hPa has a temperature of 15oC and a 

relative humidity of 58%. 
 

a) What is the partial pressure of water vapour in the parcel, and what is the water 
vapour mass mixing ratio in the parcel? (5%) 

Since the relative humidity (in %) is RH = 100*ew/es(T), where ew is the partial 
pressure of water vapour and es(T) is the saturation water vapour partial pressure 
at temperature, T, one needs to use the Clausius–Clapeyron relation given in the 
formulae.  That relation for a temperature of 15 C = 288.15 K, yields 
es = 17.4 hPa.  For a relative humidity of 58%, this gives the partial pressure of 
water vapour as ew = 0.58*17.4 hPa = 10.1 hPa. 
(if T(K) = 273+T(C) instead of 273.15 is used, get 9.97 hPa) 

The mass mixing ratio of water vapour at pressure P is given by  = e/P, where 
 is the ratio of the molar mass of H2O vapour to the molar mass of air.  Since 
there is so little water vapour in air, one can approximate the molar mass of air 
as the molar mass of dry air, so   Mv/Md, which from the values given in the 
formulae yields   0.622.  For 10.1 hPa of water vapour at a pressure of 1000 
hPa, this gives   0.00622, or 6.22 g/kg. (again, with 273K=0C get 6.02 g/kg) 

b) What is the dew-point temperature of the parcel? (3%) 

No trick here; the dew point temperature is the temperature at which the water 
vapour in the parcel would just be saturated.  That is, ew = es. One needs to invert 
the Clausius-Clapeyron relation for Td, giving: 

Td
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For a water vapour partial pressure ew = 10.1 hPa, we get Td = 280 K.  

c) If the parcel is blown up a mountain side, at what pressure level can clouds begin 
to form? (Note, as stated the problem is too difficult to solve. Information was 
given at the exam that they should assume that the dew point temperature when 
condensation began was the same as at the parcel’s starting point) (4%) 

As the parcel rises, the pressure drops, the parcel expands and the parcel 
temperature will drop.  When the temperature reaches the dew-point temperature, 
then clouds will begin to form.  However, up to the point where condensation 
occurs, the lifting condensation level (LcL) this will be an adiabatic process.  
Thus, the pressure at which the temperature reaches the dew-point can be 
determined from the potential temperature equation (see how useful potential 

temperature is!).  So,  T 







Po
P



, and if we take as our reference 

P = Po = 1000 hPa, where T = 288.15 K, the potential temperature of the parcel 
is  = 288.15 K. This will be constant as long as the water does not condense. The 

pressure at which T = Td =280 K is then given by P Po 







Td




, which yields 

PLCL = 905 hPa. (if Po and P are reversed in the calculation, I deducted 2 points) 
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d) If it blows higher than this and it snows and rains such that the parcel loses ¼ of 
its water mass, what temperature does the parcel have when it comes back down 
to 1000 hPa? (5%) 

The amount of latent heat released upon condensation of a mass of water, Mw, is 
LvMw (look at the units of the latent heat  J kg-1).  For an amount of heat 
deposited in the air in the parcel, the air will raise its temperature by CpMairT 
(again, the clue is in the units of the heat capacity  JK-1kg-1).  

Now, if some condensed water is lost, it cannot gather this heat up from the parcel 
when the water vapour re-vaporizes.  Thus, the heat remaining in the parcel will 
be: LvMW-Lost, and this amount of energy will heat the air by CpMairT.  Equating 
these and solving for the temperature difference, we get: T = Lv/Cp(MW-Lost/ 
Mair).   

The part in the bracket is just the mass mixing ratio of the water lost, lost= ¼.  
We calculated  in part a) to be 6.22x10-3, which gives a T = 3.9 K. and the 
parcel will be the original temperature plus this amount when it returns to the 
starting pressure.  That is, Tnew = Tstart+T = 292.1 K = 18.9 C.  If T is 
calculated but the student fails to calculate the new temperature or indicate 
clearly that the parcel is warmer by this amount, I will deduct one point.  

e) If it did not snow and rain, and the parcel kept all of its water vapour, what 
temperature would the parcel have had when it came back down to 1000 hPa?  
Why? (3%) 

Since all the latent heat that went into the parcel when the water condensed went 
back into the internal energy of the water vapour when it re-vaporized, the parcel 
will have the exact same temperature as when it started. If an explanation was not 
given I deducted 2 points 

 

 

4) (20 %) Jupiter, with a radius of 71490 km, has an albedo of 0.34 and is 5.203 AU 
(Astronomical Units) from the Sun (the Earth is 1 AU from the Sun). 

 

a) What is the radiative equilibrium temperature of Jupiter. (12%) 

So to calculate the radiative equilibrium temperature of Jupiter, we need to know 
the solar flux (W/m2) incident on Jupiter’s surface.  However, all we know is the 
solar flux at the radius of the earth’s orbit, Reo (1 au, given in the formulae), and 
the radius of Jupiter’s orbit, Rjo.  So, if the Sun has an intensity of Lo Watts, then 
the solar constant So = Lo/(4Reo

2) W/m2.  At Jupiter, the solar constant 
Sj = Lo/(4Rjo

2) W/m2.  That is, Sj = So(Reo/Rjo)2.  In astronomical units, this is 
just Sj = So(1/5.203)2 = 1367(1/5.203)2 W/m2 = 50.5 W/m2. 

Now, it is just the radiative equilibrium problem of balancing the Power Absorbed 
by the Power Radiated, and realizing that the amount reflected,  (the albedo), 
does not contribute to the heating, this is:  

Sj ( )1   Rj2 4  Rj2  Tj4  
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Where Rj is the planet’s radius and  is the Stefan-Boltzmann constant (from the 
formulae).  Of course The planetary radius drops out and we have the familiar 
form: 


Sj ( )1 

4
 Tj4  

Solving for Tj given the solar constant at Jupiter and the albedo yields a 
temperature of Tj = 110.1 K. 

b) The observed blackbody temperature of Jupiter is 124 K. Compare with your 
radiative equilibrium temperature from part A, and estimate the power emitted 
from the top of the atmosphere that is generated internally by processes on the 
planet. (8%) 

The internally generated power must equal the difference between the radiative 
equilibrium power (which is proportional to the temperature calculated above, Tj) 
and the emitted power (which is proportional to the observed blackbody 
temperature, Tbb).  That is, if it is radiating more power than it is receiving, that 
power has to come from somewhere, and hence it is generated in the planet’s 
atmosphere.  Thus: 

Pint 4  Rj2  ( )Tbb 4 Tj4  
Now we need the planet’s radius, and can calculate the internally generated 
power to be, upon substituting for Tj from above: Pint = 3.25x1017 Watts.  

 

5) (20 %) In class we calculated the radiative equilibrium temperature of the Earth using 
a single layer to represent the atmosphere and observed a greenhouse effect. To 
simulate both a boundary layer and the free tropopause, we can expand the model by 
taking two layers at 0.5 km and 2 km height.  Each layer absorbs all infrared radiation 
(TransmissionL=0) and is transparent to solar radiation (TransmissionS=1). 

 

a) Calculate the surface temperature and the temperature of the two layers assuming 
a surface albedo of 0.3 and radiative equilibrium. (12%) 

Here we have to realize that a perfect absorber is also a perfect radiator 
(Kirchoff’s Law).  Thus, the IR radiation absorbed by a layer of the atmosphere 
will be re-radiated in both directions.  When we look at the flux to the surface, the 
flux from the surface to the lower level (it will not pass through the lower level to 
the upper level), and the flux from the atmospheric layers themselves, we have: 

 

Where Layer 1 only receives 
radiation from layer 2, and 
layer 2 receives radiation from 
both the surface and Layer 1. 
Since the atmospheric 
transmission for visible light is 
1, only the surface absorbs the 
incoming solar radiation.
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The explanation for the So/4(1-) is the same as in problem 4.  That is, solar 
power absorbed by the earth = Re

2So(1-), and the power radiated from all 
levels is 4Re

2(Tlevel)4.   

We need to balance the power in vs the power out at each level, so we have at 
Layer 1: 

 T24 2  T14  
At Layer 2: 

 T14  Ts4 2  T24  
And at the Surface 


So ( )1 

4
 T24  Ts4  

If we Start with Layer 1 and get T1 in terms of T2, we can eliminate T1 in the 
expression for Layer 2 , and then get and expression for (T2)4 in terms of (Ts)4.  
This lets us go down to the surface and get an expression for (Ts)4 in terms of 
the incoming solar radiation.  These steps give: 

 T14  T24

2  

 T24 2  Ts4

3  
 Ts4 3

So ( )1 
4  

In fact, we can show that for N layers,  Ts4 ( )N 1 So ( )1 
4  

Putting in So= 1367 W/m2 and = 30%, we get: 

Ts = 335.4 K = 62.3 C 
T2 = 303.1 K = 29.9 C 
T1 = 254.9 K = -18.3 C 

b) If the dry adiabatic lapse rate is taken to be 9.8 K/km, is the air between layer 1 
and layer 2 stable?  Why or why not? (4%) 

Here we can calculate the environmental lapse rate to be: 
e = -(T/z) = 48.2 K/1.5 km = 32 K/km. 

So that any air displaced upward from the lower layer would find its temperature 
dropping only 9.8 K/km1.5 km = 14.7 K, and it would be much warmer than the 
surrounding air.  Thus, it will continue to rise and be unstable. 

c) What will happen to the air between layer 2 and layer 1?  
How will this affect the power radiated to space from the uppermost layer? (4%) 

Since the air is unstable, convective motions will develop and redistribute heat 
vertically until the lapse rate adjusts to the dry adiabatic lapse rate. 

This will raise the temperature of Layer 1 above that of radiative equilibrium 
(convectively transporting heat up to that layer) which will cause it to radiate 
more power into space in an attempt to return to its radiative equilibrium 
temperature (the Newtonian radiative spring).  It will appear to have a hotter 
blackbody temperature. 
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VEDLEGG 
Bokmål oversettelse (tilnærmet) av eksamen hvis det er spørsmål om terminologi. 
 

1) Relasjonen mellom det atmosfæriske lufttrykket og høyden, z, er gitt som: 
 P =Po(1-z/L) ,  der L=8,5 km og Po=1000 hPa . 
a) Hva er atmosfærens temperatur og tetthet ved høyden der lufttrykket er 950 hPa? 
b) En varmluft turistballong er i hydrostatisk likevekt ved høyden der lufttrykket er 950 hPa. 

Ballongens utstyr (men ikke luften inne i ballongen) veier 600 kg. Dersom ballongens 
volum er 3000 m3, hva er temperaturen i luften inne i ballongen? (Hvis du ikke har løst 
del a), anta at temperaturen er 15 oC) 
 

2) Romfartøyet Voyager-I observerte Titan, en av Saturns måner. Det oppdaget et sjikt med 
hydrokarbon aerosoler ved et lufttrykk på 1000 hPa, hvor den atmosfæriske temperaturen ble 
målt til 88 K. Selv om overflatetemperaturen ikke kunne måles, ble overflatetrykket målt til 
1500 hPa. For Titans tørre atmosfære, som består av 80% nitrogen, er gasskonstanten RT=290 
JK-1kg-1, CPT=1044 JK-1kg-1, og gT<<gEarth. 
a) Beregn den maksimale overflatetemperaturen forutsatt at atmosfæren er stabil med 

hensyn til vertikale bevegelser.  
b) Senere ble den sanne overflatetemperaturen målt til 94 K av Voyager-II. Forventer du 

konveksjon i Titans atmosfære? Begrunn svaret. 
c) Forutsatt isoterme forhold, hvor mange skalahøyder over overflaten finnes hydrokarbon-

aerosolsjiktet? 
 

3) En luftpakke har trykk p= 1000 hPa, temperatur T = 15oC og relativ fuktighet på 58%. 
a) Hva er luftpakkens partialtrykk for vanndamp og blandingsforhold for vanndamp?  
b) Hva er luftpakkens duggpunktstemperatur? 
c) Hvis luftpakken blir ført langs fjellsiden, ved hvilket lufttrykknivå kan skyer dannes? 
d) Luftpakken i del (c) stiger opp over fjelltoppen der det snør og regner slik at pakken 

mister ¼ av sin vannmasse. Hvilken temperatur vil pakken ha når den kommer ned igjen 
høyden der lufttrykket er 1000 hPa?  

e) Dersom det ikke snødde eller regnet, og luftpakken i del (c) beholdt all sin vanndamp, 
hvilken temperatur ville luftpakken ha hatt da den kom ned igjen til høyden der 
lufttrykket var 1000 hPa? 

 
4) Jupiter har en radius på 71.490 km, en albedo på 0,34 og ligger 5,203 AE (astronomiske 

enheter) fra Solen (Jorden ligger 1 AE fra Solen). 
a) Hva er Jupiters strålingsbalansetemperatur?  
b) Den observerte luminanstemperatur (et sort legemes temperatur) fra Jupiter er 124 K. 

Sammenlign med strålingsbalansetemperaturen fra del A, og anslå effekten som slippes ut 
fra toppen av atmosfæren, generert av interne prosesser på planeten? 
 

5) I løpet av kurset beregnet vi jordens strålingsbalansetemperatur ved å la et enkelt sjikt 
representer atmosfæren og ut fra det bestemte en drivhuseffekt. For å simulere både et 
atmosfærisk grensesjikt og troposfæren kan vi utvide modellen til to lag, ett på 0.5 km og ett 
på 2 km. Hvert lag slipper gjennom synlig lys fra sola (TransmisjonS=1) men absorberer all 
varmestråling (TransmisjonL=0) 
a) Beregn overflatetemperaturen og temperaturen av de to lagene. Anta strålingsbalanse og 

at overflatealbedoen er 0,3.  
b) Hvis vi antar at den tørradiabatiske temperaturendringen er 9,9 K/km, er luften mellom 

lag 1 og lag 2 stabilt? Begrunn svaret. 
c) Hva vil skje med luften mellom lag 1 og lag 2?  Hvordan vil dette påvirke utstrålt effekt 

fra det øverste laget mot verdensrom?  


