
FY3452 Gravitation and Cosmology Final exam 27.5.2009

NTNU Trondheim, Institutt for fysikk

Examination for FY3452 Gravitation and Cosmology
Contact: Michael Kachelrieß, tel. 73 59 3643 or 99 89 07 01
Possible languages for your answers: Bȯkmal, Castellano, English, Nynorsk.

Allowed tools: Pocket calculator, mathematical tables

Some formulas can be found at the end of p.2.

1. Hyperbolic plane H2.
The line-element of the Hyperbolic plane H2 is given by

ds2 = y−2(dx2 + dy2) and y ≥ 0 .

a. Write out the geodesic equations and deduce the Christoffel symbols Γa
bc. (4 pts)

b. Calculate the Riemann (or curvature) tensor Ra
bcd and the scalar curvature R. (4 pts)

a. Using as Lagrange function L the kinetic energy T instead of the line-element ds makes
calculations a bit shorter. From L = y−2(ẋ2 + ẏ2) we find as solutions of the Lagrange equations

ẍ − 2
ẋẏ

y
= 0 and ÿ −

ẏ2

y
+

ẋ2

y
= 0 .

Comparing with the given geodesic equation, we read off the non-vanishing Christoffel symbols

as −Γx
xy = −Γx

yx = Γy
xx = −Γy

yy = 1/y. (Remember that −2y−1ẋẏ = Γx
xyẋẏ + Γx

xyẋẏ.)

b. We calculate e.g.

Ry
xyx = ∂yΓ

y
xx − ∂xΓy

xy + Γy
eyΓ

e
xx − Γy

exΓ
e
xy

= −1/y2 + 0 + Γy
yyΓ

y
xx − Γy

xxΓx
xy

= −1/y2 + 0 − 1/y2 + 1/y2 = −1/y2 .

Next we remember that the number of independent components of the Riemann tensor in d = 2
is one, i.e. we are already done: All other components follow by the symmetry properties.
The scalar curvature is (diagonal metric with gxx = gyy = y2)

R = gabRab = gxxRxx + gyyRyy = y2(Rxx + Ryy) .

Thus we have to find only the two diagonal components of the Ricci tensor Rab = Rc
acb. With

Rxx = Rc
xcx = Rx

xxx + Ry
xyx = 0 + Ry

xyx = −1/y2

Ryy = Rc
ycy = Rx

yxy + Rx
yxy = Rx

yxy + 0 = −Ry
xxy = Rx

yxy = −1/y2 ,

the scalar curvature follows as R = −2. Hence the hyperbolic plane H2 is a space of constant

curvature, as R2 and S2.

[If you wonder that R = −2, not -1: in d = 2, the Gaussian curvature K is connected to the
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“general” scalar curvature R via K = R/2. Thus K = ±1 means R = ±2 for spaces of constant

unit curvature radius, S2 and H2. You may also check that the Riemann and Ricci tensor satisfy

the relations for maximally symmetric spaces, Rab = Kgab and Rabcd = K(gacgbd − gadgbc).]

2. Kerr metric.
The metric outside a spherically symmetric mass distribution with mass M and angular
momentum J is given by

ds2 = −

[

1 −
2Mr

ρ2

]

dt2−
4Mar sin2 ϑ

ρ2
dφdt+

ρ2

∆
dr2+ρ2dϑ2+

[

r2 + a2 +
2Mra2 sin2 ϑ

ρ2

]

sin2 ϑdφ2 ,

with

a =
J

M
, ρ2 = r2 + a2 cos2 ϑ , ∆ = r2 − 2Mr + a2 .

a. Find the outer boundary of the ergosphere, i.e. the surface enclosing the region where
no stationary observers are possible in the Kerr metric. (3 pts)
b. Find the two horizons of the Kerr metric. (1.5 pt)
d. Determine the smallest possible unstable circular orbit of a massive particle for J = 0.
(Hint: Consider the effective potential Veff .) (6 pt)

a. The normalization condition u · u = −1 is inconsistent with ua = (1, 0, 0, 0) and gtt > 0.
Solving

gtt = 1 −
2Mr

ρ2
= 0

we find the position of the two stationary limit surfaces at

r1/2 = M ±
√

M2 − a2 cos2 ϑ . (1)

The ergosphere is the space bounded by these two surfaces; the outer boundary corresponds to

the plus sign.

b. The coordinate singularity at ∆ = r2 − 2Mr + a2 = 0 or

r± = M ±
√

M2 − a2

corresponds to horizons, i.e. satisfy the conditions grr = 0 or grr = 1/grr = ∞. Hence, r− and

r+ define an inner and outer horizon around a Kerr black hole.

c. non-existent.

d. The condition J = 0 gives the Schwarzschild metric. Spherical symmetry allows us to choose
ϑ = π/2 and uϑ = 0. Then we replace in the normalization condition u · u = −1 written out for
the Schwarzschild metric,

−1 = −

(

1 −
2M

r

)(

dt

dτ

)2

+

(

1 −
2M

r

)−1 (

dr

dτ

)2

+ r2

(

dφ

dτ

)2
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the velocities ut and ur by the conserved quantities

e ≡ −ξ · u =

(

1 −
2M

r

)

dt

dτ

l ≡ η · u = r2 sin ϑ2 dφ

dτ
.

Inserting e and l, then reordering gives

e2 − 1

2
=

1

2

(

dr

dτ

)2

+ Veff

with

Veff = −
M

r
+

l2

2r2
−

Ml2

r3
.

Circular orbits correspond to dVeff/dr = 0 with

r1,2 =
l2

2M

[

1 ±
√

1 − 12M2/l2
]

.

The unstable circular orbit (i.e. at the maximum of Veff) corresponds to the minus sign, and its
radius becomes smaller for l → ∞. Hence

rmax =
l2

2M

[

1 − 1 + 6(M/l)2 + . . .
]

= 3M

is the minimum possible radius.

3. Scalar fields in FLRW metric.
Consider a scalar field φ with potential V

L =
1

2
gab∇aφ∇bφ + V (φ)

in a flat FLRW metric,

ds2 = −dt2 + a2(t)

[

dr2

1 − kr2
+ r2(sin2 ϑdφ2 + dϑ2)

]

.

a. Derive the equation of motions for φ. (4 pts)
b. Derive the energy-momentum tensor for φ. (3 pts)
c. Derive the equation of state w = P/ρ for φ assuming that the field φ is uniform in space,
φ(t, ~x) = φ(t). (2 pts)
d. Scalar fields are often used as models for inflation. Give one necessary condition that
φ can drive inflation. (1 pt)

a. Flat means k = 0 and thus life becomes easier using Cartesian coordinates. Then gab =
diag(−1, a2, a2, a2), gab = diag(1, a−2, a−2, a−2), and

√

|g| = a3. We can use either the Lagrange
formalism or (faster) use directly the action principle. Varying the action

SKG =

∫

Ω

d4x
√

|g|

{

1

2
gab∇aφ∇bφ + V (φ)

}

=

∫

Ω

d4x a3

{

−
1

2
φ̇2 +

1

2a2
(∇φ)2 + V (φ)

}
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w.r.t. the field φ gives

δSKG =

∫

Ω

d4x a3

{

−φ̇δφ̇ +
1

a2
(∇φ) · δ(∇φ) + V ′δφ

}

.

Now we use δ∂aφ = ∂aδφ (this is not an assumption, as you may convince yourself by writing
this out with δφ(x) = εφ(x)) and integrate the first two terms by part. The boundary terms are
zero, since we require δφ(Ω) = 0. Finally we use a = a(t) and get

δSKG =

∫

Ω

d4x

{

d

dt
(a3φ̇) − a∇2φ + a3V ′

}

δφ

=

∫

Ω

d4x a3

{

φ̈ + 3Hφ̇ −
1

a2
∇2φ + V ′

}

δφ
!
= 0 .

Thus the field equation for a Klein-Gordon field in a flat FRW background is

φ̈ + 3Hφ̇ −
1

a2
∇2φ + V ′ = 0 .

b. Varying the action w.r.t. the metric gives

δSKG =
1

2

∫

Ω

d4x
{

√

|g|∇aφ∇bφ δgab + [gab∇aφ∇bφ − 2V (φ)]δ
√

|g|
}

=

∫

Ω

d4x
√

|g|δgab

{

1

2
∇aφ∇bφ −

1

2
gabL

}

. (2)

and thus

Tab =
2

√

|g|

δSm

δgab
= ∇aφ∇bφ − gabL . (3)

c. Setting the spatial gradients to zero gives

T ab = ∇aφ∇bφ − gabL = −φ̇2uaub − gab

[

1

2
φ̇2 − V (φ)

]

with ua = (1, 0, 0, 0). Comparing with the energy-momentum tensor of a perfect fluid,

T ab = (ρ + P )uaub + Pgab

we find P = φ̇2/2 − V (φ) and ρ = φ̇2/2 + V (φ). Thus

w =
P

ρ
=

φ̇2/2 − V (φ)

φ̇2/2 + V (φ)

d. A necessary condition is w → −1 or φ̇2 ≪ V (φ).

4. Killing vectors.
Consider Minkowski space of special relativity,

ds2 = −dt2 + dx2 + dy2 + dz2 .
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a. Find all ten Killing vectors and name the conserved symmetries and conserved
quantities. (4.5 pt)

a. [It was sufficient to name the symmetries and conservation law, but we give also a short
derivation.] The Killing equation ∇iξj + ∇jξi = 0 simplifies in Minkowski space to

∂iξj = −∂jξi .

The first four obvious Killing vectors are the Cartesian basis vectors,

T0 = ∂t, T1 = ∂x, T2 = ∂y, T3 = ∂z,

of Minkowski space. Here as in the following, we use for the basis ei the notation ei = ∂i

(correct because of ∂idxj = δj
i ), such that the following equations should remind you to quantum

mechanics. In coordinate notation, T0 = (1, 0, 0, 0), . . . ,T3 = (0, 0, 0, 1). The four Killing vectors
Ti generate translations, xi → xi + ai. For a particle with momentum p = mu moving along
x(λ), the existence of a Killing vector Ti implies

d

dλ
(Ti · u) =

d

mdλ
(Ti · p) = 0

i.e. the conservation of the four-momentum component pi. (Energy for time-like Ki, one
component of the three-momentum for space-like Ki.)

Consider next the αβ (=spatial) components of the Killing equation. Three additional
Killing vectors are

J1 = y∂z − z∂y ,

J2 = z∂x − x∂z ,

J3 = x∂y − y∂x .

Remembering QM (pi ↔ ∂i), we expect that Ji generate rotations and that the conserved quantity
is the angular momentum ~L. Second, we see that we can promote the three components of Ji to
anti-symmetric 4-dim. tensor, the other 3 components satisfying the 0α component of the Killing
equations (B0 = −B0),

B1 = t∂z + z∂t ,

B2 = t∂x + x∂t ,

B3 = t∂y + y∂t .

Next we confirm that Ji generate rotations. We write for an infinitesimal rotation around, e.g.
the z axis,

t′ = t ,

x′ = cos αx − sin αy ≈ x − αy ,

y′ = sinαx + cos αy ≈ y + αx ,

z′ = z .
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Hence J3 is indeed J3 = (0,−y, x, 0). (We could have found ξz also by rewriting the line-
element in spherical coordinates and noting that ds does not contain φ dependent terms (“cyclic
coordinate”). The other two rotations follow by cyclic permutation.)
The existence of Killing vectors Ji implies that Ji · p is conserved along a geodesics of particle.
But

J1 · p = ypz − zpy = Lx

and thus the angular momentum around the origin of the coordinate system is conserved.
We can repeat the discussion for proper Lorentz transformations (boosts), with the sign changes
because of B0 = −B0 as only difference. Boosts corresponds to rotations in a hyperbolic space
(or around an imaginary angle); e.g.

t′ = cosh αt + sinhαx ≈ t + αx ,

x′ = sinhαt + cosh αx ≈ x + αt ,

y′ = y

z′ = z .

Hence B1 = (t, x, 0, 0) and the other two follow again by cyclic permutation. The conserved

quantity tpz−zE = const. now depends on time and is therefore not as popular. . . Its conservation

implies that the center of mass of a system of particles moves with vα = pα/E.

5. Radiation from a particle in a gravitational field.
An electron is released at the position r ≫ 2M in the gravitational field of a point mass
M and moves thereafter on a geodesics. Give either a short, simple argument why
a. the electron does not emit radiation. (1 pt)
and
b. the electron does emit radiation. (1 pt)
or
c. decide which one of the alternatives is correct and explain why. (2 pt)

a. We can always find a normal coordinate system at the position of the electron that is locally

Minkowskian, transforming gravity away: no gravity, no acceleration, no emitted radiation.

b. For r ≫ 2M , Newtonian physics is a good approximation: Gravity enters as any other force

Newton’s law F = ma, the electron is accelerated and emits radiation.

c. Argument a. is wrong, because it applies only to the point-like electron but not to its 1/r

Coulomb field. Tidal effects distort the Coulomb field, leading to the emission of radiation.

Some formula: Signature of the metric (+,−,−,−). [wrong, should be (−, +, +, +).

T ab = (ρ + P )uaub + Pgab

∇iξj + ∇jξi = 0
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ẍc + Γc
abẋ

aẋb = 0

2
√

|g|

δSm

δgab
= Tab

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + Γa

ecΓ
e
bd − Γa

edΓ
e
bc ,

δ
√

|g| =
1

2

√

|g| gabδgab
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