FY3452 Gravitation and Cosmology Final exam 21.5.2010

NTNU Trondheim, Institutt for fysikk

Examination for FY3452 Gravitation and Cosmology

Contact: Kare Olaussen, tel. 735 93652 / 45437170

Possible languages for your answers: Bokmal, English, German, Nynorsk.
Allowed tools: Pocket calculator, mathematical tables

Some formulas can be found at the end of p.2.

1. Sphere S2.
The line-element of the two-dimensional unit sphere S? is given by

ds® = d¥? + sin® ¥d¢? .

a. Write out the geodesic equations and deduce the Christoffel symbols I'?,.. (6 pts)
b. Calculate the Ricci tensor R, and the scalar curvature R. (Hint: Use the symmetry
properties of this space.) (6 pts)

a. We use as Lagrange function L the kinetic energy T. From L = g d%db = 92 + sin? 19(]52 we
find

oL doL d. . .. - o
9 0 , & 33 dt( sin® ¥¢) sin” ¥¢ + 4 cos ¥ sin V¢
oL ‘5 d oL d . ..
) i S-S =2
59 cos ¥ sin ¥¢ , & 90 dt( ¥) =29

and thus the Lagrange equations are

é + 2cot 9d¢ = 0 and ¥ — cos¥sin¥g? = 0.

Comparing with the given geodesic equation, we read off the non-vanishing Christoffel symbols
as F¢19¢ = Fqﬁw = cot ¥} and Fﬁw = —cos¥sinv. (Remember that 2cot v = F‘z}% + I"bw.)

b. The Ricci tensor of a maximally symmetric spaces satisfies R,y = K¢gqp. Since the metric
is diagonal, the non-diagonal elements of the Ricci tensor are zero too, Rgy = Ryy = 0. We

calculate with
Rab = Rcacb = acrcab - abrcac + 1_‘Cabrdcd - decrcad

the 99 component,
Rgy = 0— 09I, +T7) +0—T% %, =0+ycoty — I 1%
= 0—9gcotd —cot?>¥ =1

From Rab = Kgaba we find Rgg = Kng and thus K = 1. Hence R¢¢ = 9o = sin2 .
The scalar curvature is (diagonal metric with g?? = 1/sin? ¢ and ¢?” = 1)

R=g"Rqy = 9¢¢R¢¢ + g% Ryy = sin?94+1x1=2.

1
sin? ¢
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[If you wonder that R = 2, not 1: in d = 2, the Gaussian curvature K is connected to the
“general” scalar curvature R via K = R/2. Thus K = +1 means R = £2 for spaces of constant
unit curvature radius, S? and H2

2. Black holes.
The metric outside a spherically symmetric mass distribution with mass M is given in
Schwarzschild coordinates by
dr? 2M
ds? = ot r?(d9? + sin? ¥9d¢?) — dt? (1 — 7)

a. Use the “advanced time parameter”
p=t+r+2Mln|r/2M — 1]

to eliminate ¢ in the line-element (i.e. introduce Eddington-Finkelstein coordinates) and
show that in the new coordinates the singularity at & = 2M is absent. (3 pts)
b. Draw a space-time diagram considering radial light-rays in the { = p—r, r plane. Include
the world-line of an observer falling into the black hole. Explain why » = 2M is an event

horizon. (4 pts)
c. Determine the smallest possible stable circular orbit of a massive particle. (Hint: Use
the Killing vectors of the metric and consider the effective potential Vig.) (7 pts)

a. Forming the differential,

-1 oM\ !
dp:dt—i—dr%—(ﬁ—) dr:dt+<1—r> dr,

we can eliminate d¢ from the Schwarzschild metric and find

oM
ds? = — <1 — > dp? + 2dpdr + r2dQ.
T

This metric is regular at 2M and valid for all r > 0.

b. For radial light-rays, ds = d¢ = dv = 0, it follows
2M
0=— <1— > dp? + 2dpdr .
T

There exist three types solutions: i) for r = 2M, light-rays have constant r and p; ii) light-rays
with p = const.; iii) dividing by dp,

2M
O——(l—)dp—i—dr

r

we separate variables and integrate,

p—2(r+2MlIn|r/2M — 1|) = const.
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The light-rays of type ii) are ingoing: as t increase, r has to increase to keep p constant. The
light-rays of type ii) are ingoing for r < 2M and outgoing for » > 2M. Thus for » < 2M both
radial light-rays moves towards r = 0; all wordlines of observers are inside such light-cones and
have to move towards » = 0 too. Hence r = 2M is an event horizon.

c. Spherical symmetry allows us to choose ¥ = 7/2 and uy = 0. Then we replace in the
normalization condition u-u = —1 written out for the Schwarzschild metric,

() () (2 (@) ()

the velocities u; and w, by the conserved quantities

e = f-u:<1m>dt

r dr

I = n-uerSinﬁQ@.
dr

Inserting e and [, then reordering gives

21 1 /dr\?
P

2 2\dr
with
Ve o M 2 MI?
off = 77 2r2 r3

Circular orbits correspond to dVeg/dr = 0 with
o= [1 +/1- 12M2/z2} .
’ 2M
The stable circular orbit (i.e. at the minimum of Vg ) corresponds to the plus sign. The square root
becomes negative for [ = 6 M and thus the “innermost stable circular orbit” is for a Schwarzschild

black hole at rigco = 6M.

3. Cosmology.
Consider a flat universe dominated by one matter component with E.0.S. w = P/p =const.
a. Use that the universe expands adiabatically to find the connection p = p(R,w) between

the density p, the scale factor R and the state parameter w. (4 pts)
b. Find the age ty of the universe as function of w and the current value of the Hubble
parameter, H. (3 pts)
c. Comment on the value of ¢ in the case of a positive cosmological constant, w = —1. (2
pts)

d. Find the relative energy loss per time, E~'dE/dt, of relativistic particles due to the
expansion of the universe for Hy = 70km/s/Mpc. (1 pt)
a. For adiabatic expansion, the first law of thermodynmaics becomes dU = —PdV or

d(pR?) = —3PR?*dR
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Eliminating P with P = P(p) = wp,

dp 3 2 _ 2
dRR + 3pR” = —3wpR~.

Separating the variables,

dR d

we can integrate and obtain p oc R™3(1Fw),

b. For a flat universe, k = 0, with one dominating energy component with w = P/p = const. and
p = per (R/Ro)~31+%) the Friedmann equation becomes

RQ — %GpRQ —_ H8R8+3w R—(1+3w) ’ (1)
where we inserted the definition of p,, = 3HZ/(87G). Separating variables we obtain
R() to
Ry B3}/ / dR ROT30)/2 = [ / dt = toHy (2)
0 0

and hence the age of the Universe follows as

2

toHy = .
050 ™ 3 3w

c. Models with w > —1 need a finite time to expand from the initial singularity R(t = 0) = 0
to the current value of the scale factor Ry, while a Universe with only a A has no “beginning”,
toHg — oc.

d. The connection between the energy Ey today and the energy at redshift z is
E(z) = (1+2)Eo
and thus dE = dzFEy. Differentiating 1+ z = Ro/R(t), we obtain with H = R/R

Ro g FodR
R? R2 dt
Combining the two equations, we find dE = —(1 + z) HdtEy = —HdtE or

dz = dR = dt = —(1 + 2)Hdt .

== —H(z) = —Ho(1+2)"?.

Numerically, we find for the current epoch

1 dE _ 7.1 x10%m

T T 52 x 103657,
E dt  s3.1 x 10%%cm % S
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4. Symmetries.
Consider in Minkowski space a complex scalar field ¢ with Lagrange density

N T PVUR ST
L= 50,010 — [ N0'0)

a. Name the symmetries of the Langrangian. (1.5 pts)
b. Derive Noether’s theorem in the form

oL
0=0L=0,| 75— 00 — K" ] .
(0 100 )
(4.5 pts)
c. Derive one conserved current of your choice. (4 pts)

a. space-time symmetries: Translation, Lorentz, scale invariance. internal: global SO(2) / U(1)
invariance.

b. We assume that the collection of fields ¢, has a continuous symmetry group. Thus we can
consider an infinitesimal change ¢, that keeps L(¢q, 0,¢,) invariant,

oL oL
0=0L=—"0by + ——— 50,04 . 3
a¢a ¢ +a(au¢a) M¢ ( )

Now we exchange 60, against d,0 in the second term and use then the Lagrange equations,
OL/0¢q = 0u(0L]/00u¢a), in the first term. Then we can combine the two terms using the Leibniz
rule,

oL oL oL

——— | 0¢a + =5—= 0,00q =0 <6¢a>. 4
oneey) 2+ gy 0% = (g W
Hence the invariance of £ under the change §¢, implies the existence of a conserved current,
OuJ* = 0, with

0—55—@(

oL
= —— (¢, 5
1 a( 8# ¢a) a ( )
If the transformation d¢, leads to change in £ that is a total four-divergence, 6£ = 0, K*, and
boundary terms can be dropped, then the equation of motions are still invariant. The conserved
current is changed to

TP = §L/50u¢q 6da — K"

c. i) Translations: From ¢q(x) — ¢u(z —¢) = ¢o(x) — e*0u¢(x) we find the change dp,(x) =
—et0,¢(x). The Lagrange density changes similiarly, £(z) — L(z —¢) or 0L(x) = —e*0,L(x) =
—0u(e"L(x)). Thus K* = —e#*L(x) and inserting both in the Noether current gives

oL y B y
JH = m [—5 ng(x)] + E'U';C(l‘) = €Z,TM
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with TH as energy-momentum tensor and four-momentum as Noether charge.
or
ii) Charge conservation: We can work either with complex fields and U(1) phase transformations

o(z) — p(2)e | ¢l(z) — ¢'(x)e

or real fields (via ¢ = (¢ +i¢2)/v/2) and invariance under rotations SO(2). With ¢ = iag,
§¢f = —iagl, the conserved current is

=160 — (069

Some formula: Signature of the metric (—, 4, +, +).

i e ,%" =0

R%q = 0Ly — 0al%,. + T, 10 — T00

g — g Tl
8T k A
H? = Gp— — 4+ =
5P Tty
R A 447G
- P
7= 3 3 (p+3P)

1Mpc = 3.1 x 10**cm
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Singularity—

Fig. 16.10 Schwarzschild solution in
advanced Eddington-Finkelstein

Radially infalling
particle

v=constant

coordinates. r=0
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