

Exam FY3452 Gravitation and Cosmology Spring 2016

Lecturer: Professor Jens O. Andersen Department of Physics, NTNU Telefon: 73593131

> Tuesday May 31 2016 09.00-13.00

Permitted examination support material:

Approved calculator

Rottmann: Matematisk Formelsamling Rottmann: Matematische Formelsammlung Barnett & Cronin: Mathematical Formulae

Angell og Lian: Fysiske størrelser og enheter: navn og symboler

The problem set consists of four pages. Read carefully. Good luck! Bonne chance! Viel Glück! Lykke til! In the problems, we use c = G = 1.

Problem 1

a) Consider two inertial frames S and S', where S' moves along the x-axis with velocity v. Write down the transformation that expresses t' x', y', and z' as functions of t, x, y, and z.

A disc of radius r is rotating counterclockwise with angular speed β . Its center is located at the origin in the xy-plane. A light source on the edge of the disc is emitting radiation at a frequency ω' in the rest frame of the source. When the source crosses the y-axis in the lower half-plane, it emits radiation in the y' direction, where S' denotes the instantaneous rest frame.

- **b)** Find the frequency ω and the components of the wavevector \mathbf{k} in the lab frame S in terms of the corresponding quantities ω' and \mathbf{k}' in S'.
- c) Find the speed $v = \beta r$ such that the angle between the radiation and x-axis in S is $\frac{1}{4}\pi$.

Problem 2

Consider a two-dimensional space with the line element

$$ds^2 = dr^2 + f(r)d\phi^2, (1)$$

where r and ϕ are coordinates with range $0 \le r < \infty$ and $0 \le \phi \le 2\pi$, and f(r) is a smooth real function.

- a) The only nonzero Christoffel symbols are $\Gamma^r_{\phi\phi}$ and $\Gamma^{\phi}_{r\phi} = \Gamma^{\phi}_{\phi r}$. Calculate the nonzero Christoffel symbols.
- b) The only nonzero components of the Ricci tensor are R_{rr} and $R_{\phi\phi}$. Calculate the nonzero components of the Ricci tensor.
- \mathbf{c}) Use this to show that the Ricci scalar R can be written as

$$R = \frac{1}{2} \frac{[f'(r)]^2}{f^2(r)} - \frac{f''(r)}{f(r)}. \tag{2}$$

d) Finally assume that f(r) is of the form

$$f(r) = r^n , (3)$$

where n is nonnegative integer. For which values of n is the space flat? For which values is the space Euclidean?

Problem 3

In this problem, we are going to study some of the properties of an electrically charge and spherically symmetric black hole. The metric was found by Reissner and Nordstrom and reads

$$ds^{2} = -\left(1 - \frac{2m}{r} + \frac{\varepsilon^{2}}{r^{2}}\right)dt^{2} + \left(1 - \frac{2m}{r} + \frac{\varepsilon^{2}}{r^{2}}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}, \quad (4)$$

where m is the mass and $Q = \varepsilon^2$ is the electric charge of the black hole.

a) r = 0 is a coordinate singularity (and a physical one as well). Show that the other coordinate singularities are given by

$$r_{\pm} = m \pm \sqrt{m^2 - \varepsilon^2} \,. \tag{5}$$

We can use r_{\pm} to divide r into the three different regions according to

I:
$$0 < r < r_{-}$$
,
II: $r_{-} < r < r_{+}$,
III: $r_{+} < r$. (6)

b) Using a clever coordinate transformation, the line element can be written in the form

$$ds^{2} = -(1-f)d\bar{t}^{2} + 2f d\bar{t} dr + (1+f)dr^{2} + r^{2} d\Omega^{2}, \qquad (7)$$

where $f = \frac{2m}{r} - \frac{\varepsilon^2}{r^2}$. Show that a family of radial null geodesics are given by

$$\bar{t} + r = \text{constant} .$$
(8)

Is this family of geodesics incoming or outgoing? Draw the geodesics in an (\bar{t}, r) -diagram.

c) Show that there is another family of radial null geodesics given by

$$\frac{d\bar{t}}{dr} = \frac{1+f}{1-f} \,. \tag{9}$$

Fig. 1 shows 1-f and 1+f as functions of r. Use this to sketch the geodesics that are the solutions to Eq. (9) in a (\bar{t}, r) -diagram.

Figure 1: Plot of 1+f and 1-f as functions of r. The zeros of 1-f are at r_{\pm} .

- Show or explain that $r = r_+$ is an event horizon.
- Once the particle is in region I, is it bound to fall into the singularity at r = 0?
- We finally specialize to the case where $\varepsilon^2 = \frac{3}{4}m^2$. What are the corresponding values of r_+ and r_- ? Calculate the proper time $\Delta \tau$ it takes for a particle to travel from r_+ to r_- starting at rest.

Useful formulas

$$g_{\alpha\delta}\Gamma^{\delta}_{\beta\gamma} = \frac{1}{2} \left[\frac{\partial g_{\alpha\beta}}{\partial x^{\gamma}} + \frac{\partial g_{\alpha\gamma}}{\partial x^{\beta}} - \frac{\partial g_{\beta\gamma}}{\partial x^{\alpha}} \right] , \qquad (10)$$

$$R_{\alpha\beta} = \partial_{\gamma} \Gamma^{\gamma}_{\alpha\beta} - \partial_{\beta} \Gamma^{\gamma}_{\alpha\gamma} + \Gamma^{\gamma}_{\alpha\beta} \Gamma^{\delta}_{\gamma\delta} - \Gamma^{\delta}_{\beta\gamma} \Gamma^{\gamma}_{\alpha\delta} , \qquad (11)$$

$$R = g^{\alpha\beta} R_{\alpha\beta} . \qquad (12)$$

$$R = g^{\alpha\beta} R_{\alpha\beta} \,. \tag{12}$$