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problems, we use ¢ = G = 1.

Problem 1

a) The formulas are

t = Ayt —wvx),
¥ = ~y(x—ut),
y =y,
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b) In the frame S’, the four-momentum of the photon is &* = h(w’, 0, &, 0).
These are now transformed to the frame S using the inverse transformations.

These can be obtained by replacing v by —v. This yields

w = (W + k)
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ky = K. (7)
ko= K
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c) The angle « is given by
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where we in the last line have used that &2 = 0 or o’ = k,. An angle of 7
yields the condition
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Solving this with respect to v, we find
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Problem 2

a) First consider ng,. Since the only nonzero Christoffel symbol has § = r,
this implies that o = r because the metric is diagonal. Thus one finds
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This implies

Ty = —2f(). (13

Next consider I‘f(ﬁ. Since the only nonzero Christoffel symbol has 6 = ¢, this
implies that o = ¢ since the metric is diagonal. This yields
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This implies
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By symmetry I';. = I'/,.

b) The formula for the Ricci tensor is

Rag = 0,05 — 00, + 0,105+ —T% T (16)
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c) We need the inverse metric ¢** which is easily found by inversion of
gap) = diag(1, f(r)). We find ¢*¥ = diag(1,1/f(r)). This yields
R = gaﬁchB
1
= Rrr +—R
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d) Inserting f(r) =", we find
I 2
R = 3" [Qn —-n } : (19)

We have R = 0 for either n = 0 or n = 2. The case n = 2 corresponds
to flat Euclidean space, where the metric is expressed in polar coordinates.
The case n = 0 corresponds to flat Euclidean space expressed in Cartesian
coordinates. In the latter case, the coordinates are defined for the infinite
strip (r, ¢) € [0, 00] x [0, 27]. One can trivially extend the coordinates to the
entire plane.

Problem 3

a) The other coordinate singularities are given by the zeros of 1 — 27”‘ + i—i
This yields the solutions

ry = mEvm?—e?. (20)

b) The null geodesics are given given by ds? = 0. Radial geodesics in
addition has dff = d¢ = 0 and so we find

—(1 = f)dt* + 2fdtdr + (1 + f)dr* = 0. (21)
One solution is dt = —dr, which upon integration yields
t + r = constant . (22)

This is an ingoing light ray since f decreases as t increases.

c) By dividing Eq. (21) by dr and completing the square, one finds
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Solving with respect to j—f, we find j—f = —1 (which corresponds to the solution
above) and

dt 1+ f



Using the plot of 1 — f and 1+ f as functions of r, we conclude that (1 +
f)/(1 — f) > 0 in region I and the null geodesic is therefore outgoing. In
region II, on the other hand, (1+ f)/(1 — f) < 0 and so the null geodesic is
incoming. In region IIT (1 + f)/(1 — f) > 0 so it is outgoing again. See Fig.
1.

d) This follows directly from properties of the null geodesics in region II
and the fact that a particle is always inside the light cone. see Fig. 1. In
fact, it can be shown that one can never reach the singularity in r = 0.

e) No, in region I, the one of the null geodesic is incoming and the other
outgoing. Consequently the particles need not fall into the singularity at
r =0, see Fig. 1.

f) Inserting £2 = 3m? into Eq. (20), we find
3

= “m. 26
r+ 9 (26)
1
r-o= om. (27)
The quantity is conserved
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Using that u-u = -1
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This can be rewritten as
e —1 1/dr\> 1 om &2
2 z(m) +2<—r+rz | (80)

Starting at rest at r, = %m corresponds to e = 0. Thus the equation can be

written as
1
dr 2m g2\ 2
(d) = <r‘1‘rz> (31)

This yields
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where we in the penultimate line have inserted the value 2 = %mQ and where

we in the last line have defined y = (r —m)/m. Finally, we change variable
Y= % cosx and we obtain
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= 1m. (33)

This is the same result as for a Schwarzschild black hole where the particle
starts at rest at the horizon r = 2m and ends up at the singularity r = 0.

Singularity
r=0

Figure 1: Null geodesics and light cones for a charged black hole.



