

Solutions Exam FY3452 Gravitation and Cosmology Spring 2016

Lecturer: Professor Jens O. Andersen Department of Physics, NTNU Telefon: 73593131

> Tuesday May 31 2016 09.00-13.00

Aid:

Approved calculator

Rottmann: Matematisk Formelsamling Rottmann: Matematische Formelsammlung Barnett & Cronin: Mathematical Formulae

Angell og Lian: Fysiske størrelser og enheter: navn og symboler. In the

problems, we use c = G = 1.

Problem 1

The formulas are

$$t' = \underline{\gamma(t - vx)}, \qquad (1)$$

$$x' = \underline{\gamma(x - vt)}, \qquad (2)$$

$$y' = \underline{y}, \qquad (3)$$

$$z' = \underline{z}, \qquad (4)$$

$$x' = \gamma(x - vt) , \qquad (2)$$

$$y' = y, (3)$$

$$z' = \underline{\underline{z}}, \tag{4}$$

where $\gamma = \frac{1}{\sqrt{1-v^2}}$.

b) In the frame S', the four-momentum of the photon is $k'^{\mu} = \hbar(\omega', 0, k'_y, 0)$. These are now transformed to the frame S using the inverse transformations. These can be obtained by replacing v by -v. This yields

$$\omega = \gamma(\omega' + vk'_x)
= \underline{\gamma\omega'}.
k_x = \underline{\gamma(k'_x + v\omega')}$$
(5)

$$k_x = \gamma(k'_x + v\omega')$$

$$= \underline{\gamma v\omega'}. \tag{6}$$

$$k_y = \underline{\underline{k'_y}}. \tag{7}$$

$$k_z = k'_z = \underline{0}.$$
 (8)

c) The angle α is given by

$$\tan \alpha = \frac{k_y}{k_x}$$

$$= \frac{k'_y}{\omega'} \frac{1}{\gamma v}$$

$$= \frac{1}{\gamma v}, \qquad (9)$$

where we in the last line have used that $k'^2 = 0$ or $\omega' = k'_y$. An angle of $\frac{\pi}{4}$ yields the condition

$$\frac{1}{\gamma v} = 1. (10)$$

Solving this with respect to v, we find

$$v = \frac{1}{\underline{\sqrt{2}}}. \tag{11}$$

Problem 2

a) First consider $\Gamma^{\delta}_{\phi\phi}$. Since the only nonzero Christoffel symbol has $\delta=r$, this implies that $\alpha=r$ because the metric is diagonal. Thus one finds

$$g_{rr}\Gamma^{r}_{\phi\phi} = \frac{1}{2} \left[\frac{\partial g_{r\phi}}{\partial r} + \frac{\partial g_{r\phi}}{\partial r} - \frac{\partial g_{\phi\phi}}{\partial r} \right]$$
$$= -\frac{1}{2} f'(r) . \tag{12}$$

This implies

$$\Gamma^{r}_{\phi\phi} = \frac{-\frac{1}{2}f'(r)}{1}. \tag{13}$$

Next consider $\Gamma_{r\phi}^{\delta}$. Since the only nonzero Christoffel symbol has $\delta = \phi$, this implies that $\alpha = \phi$ since the metric is diagonal. This yields

$$g_{\phi\phi}\Gamma^{\phi}_{r\phi} = \frac{1}{2} \left[\frac{\partial g_{\phi r}}{\partial \phi} + \frac{\partial g_{\phi\phi}}{\partial r} - \frac{\partial g_{r\phi}}{\partial \phi} \right]$$
$$= \frac{1}{2} f'(r) . \tag{14}$$

This implies

$$\Gamma_{r\phi}^{\phi} = \frac{\frac{1}{2} \frac{f'(r)}{f(r)}}{\frac{1}{2} \frac{f'(r)}{f(r)}}.$$
 (15)

By symmetry $\Gamma^{\phi}_{\phi r} = \Gamma^{\phi}_{r\phi}$.

b) The formula for the Ricci tensor is

$$R_{\alpha\beta} = \partial_{\gamma} \Gamma^{\gamma}_{\alpha\beta} - \partial_{\beta} \Gamma^{\gamma}_{\alpha\gamma} + \Gamma^{\gamma}_{\alpha\beta} \Gamma^{\delta}_{\gamma\delta} + -\Gamma^{\delta}_{\beta\gamma} \Gamma^{\gamma}_{\alpha\delta} , \qquad (16)$$

This yields

$$R_{rr} = \partial_{r}\Gamma_{rr}^{r} - \partial_{r}\Gamma_{r\gamma}^{\gamma} + \Gamma_{rr}^{\gamma}\Gamma_{\gamma\delta}^{\delta} - \Gamma_{r\gamma}^{\delta}\Gamma_{r\delta}^{\gamma}$$

$$= -\partial_{r}\frac{1}{2}\frac{f'(r)}{f(r)} - \frac{1}{4}\frac{[f'(r)]^{2}}{f^{2}(r)}$$

$$= -\frac{1}{2}\frac{f''(r)}{f(r)} + \frac{1}{4}\frac{[f'(r)]^{2}}{f^{2}(r)}.$$
(17)

and

$$R_{\phi\phi} = \partial_r \Gamma^r_{\phi\phi} + \Gamma^r_{\phi\phi} \Gamma^\phi_{r\phi} - 2\Gamma^r_{\phi\phi} \Gamma^\phi_{\phi r}$$
$$= -\frac{1}{2} f''(r) + \frac{1}{4} \frac{[f'(r)]^2}{f(r)}.$$

c) We need the inverse metric $g^{\alpha\beta}$ which is easily found by inversion of $g_{\alpha\beta}$ = diag(1, f(r)). We find $g^{\alpha\beta}$ = diag(1, 1/f(r)). This yields

$$R = g^{\alpha\beta} R_{\alpha\beta} = R_{rr} + \frac{1}{f(r)} R_{\phi\phi} = \frac{1}{2} \frac{[f'(r)]^2}{f(r)} - \frac{f''(r)}{f(r)} .$$
 (18)

d) Inserting $f(r) = r^n$, we find

$$R = \frac{1}{2}r^{2n-2}\left[2n-n^2\right] . {19}$$

We have R=0 for either $n=\underline{0}$ or $n=\underline{2}$. The case n=2 corresponds to flat Euclidean space, where the metric is expressed in polar coordinates. The case n=0 corresponds to flat Euclidean space expressed in Cartesian coordinates. In the latter case, the coordinates are defined for the infinite strip $(r,\phi)\in[0,\infty]\times[0,2\pi]$. One can trivially extend the coordinates to the entire plane.

Problem 3

a) The other coordinate singularities are given by the zeros of $1 - \frac{2m}{r} + \frac{\varepsilon^2}{r^2}$. This yields the solutions

$$r_{\pm} = \underline{m \pm \sqrt{m^2 - \varepsilon^2}} \,. \tag{20}$$

b) The null geodesics are given given by $ds^2 = 0$. Radial geodesics in addition has $d\theta = d\phi = 0$ and so we find

$$-(1-f)d\bar{t}^2 + 2f d\bar{t} dr + (1+f)dr^2 = 0. (21)$$

One solution is $d\bar{t} = -dr$, which upon integration yields

$$\bar{t} + r = \text{constant}$$
 (22)

This is an *ingoing* light ray since f decreases as \bar{t} increases.

c) By dividing Eq. (21) by dr and completing the square, one finds

$$\left[\frac{d\bar{t}}{dr} - \frac{f}{1-f}\right]^2 = \frac{1}{(1-f)^2} \tag{23}$$

or

$$\left[\frac{d\bar{t}}{dr} - \frac{f}{1-f}\right] = \pm \frac{1}{(1-f)} \tag{24}$$

Solving with respect to $\frac{d\bar{t}}{dr}$, we find $\frac{d\bar{t}}{dr} = -1$ (which corresponds to the solution above) and

$$\frac{d\bar{t}}{dr} = \frac{1+f}{1-f} \,. \tag{25}$$

Using the plot of 1-f and 1+f as functions of r, we conclude that (1+f)/(1-f)>0 in region I and the null geodesic is therefore outgoing. In region II, on the other hand, (1+f)/(1-f)<0 and so the null geodesic is incoming. In region III (1+f)/(1-f)>0 so it is outgoing again. See Fig. 1.

- d) This follows directly from properties of the null geodesics in region II and the fact that a particle is always inside the light cone. see Fig. 1. In fact, it can be shown that one can never reach the singularity in r = 0.
- e) No, in region I, the one of the null geodesic is incoming and the other outgoing. Consequently the particles need not fall into the singularity at r = 0, see Fig. 1.
- f) Inserting $\varepsilon^2 = \frac{3}{4}m^2$ into Eq. (20), we find

$$r_{+} = \frac{3}{2}m. (26)$$

$$r_{-} = \frac{1}{2}m . ag{27}$$

The quantity is conserved

$$e = \left(1 - \frac{2M}{r} + \frac{\varepsilon^2}{r^2}\right) \frac{dt}{d\tau} . \tag{28}$$

Using that $\mathbf{u} \cdot \mathbf{u} = -1$

$$\left(1 - \frac{2m}{r} + \frac{\varepsilon^2}{r^2}\right)^{-1} e^2 + \left(1 - \frac{2m}{r} + \frac{\varepsilon^2}{r^2}\right)^{-1} \left(\frac{dr}{d\tau}\right)^2 = -1.$$
(29)

This can be rewritten as

$$\frac{e^2 - 1}{2} = \frac{1}{2} \left(\frac{dr}{d\tau} \right)^2 + \frac{1}{2} \left(-\frac{2m}{r} + \frac{\varepsilon^2}{r^2} \right) . \tag{30}$$

Starting at rest at $r_+ = \frac{3}{2}m$ corresponds to e = 0. Thus the equation can be written as

$$\left(\frac{dr}{d\tau}\right) = \left(\frac{2m}{r} - 1 - \frac{\varepsilon^2}{r^2}\right)^{\frac{1}{2}}$$
(31)

This yields

$$\Delta \tau = \int_{\frac{1}{2}m}^{\frac{3}{2}m} \frac{dr}{\left(\frac{2m}{r} - 1 - \frac{\varepsilon^2}{r^2}\right)^{\frac{1}{2}}}$$

$$= \int_{\frac{1}{2}m}^{\frac{3}{2}m} \frac{rdr}{\left(-(r-m)^2 + \frac{1}{4}m^2\right)^{\frac{1}{2}}}$$

$$= m \int_{-\frac{1}{2}}^{\frac{1}{2}} dy \frac{y+1}{\sqrt{-y^2 + \frac{1}{4}}}.$$
(32)

where we in the penultimate line have inserted the value $\varepsilon^2 = \frac{3}{2}m^2$ and where we in the last line have defined y = (r - m)/m. Finally, we change variable $y = \frac{1}{2}\cos x$ and we obtain

$$\Delta \tau = m \int_0^{\pi} \left[1 + \frac{1}{2} \cos x \right] dx$$
$$= \underline{\pi} \underline{m} . \tag{33}$$

This is the same result as for a Schwarzschild black hole where the particle starts at rest at the horizon r = 2m and ends up at the singularity r = 0.

Figure 1: Null geodesics and light cones for a charged black hole.