NTNU - Trondheim
Norwegian University of

Science and Technology

Solutions Exam FY3452 Gravitation
and Cosmology Fall 2016

Lecturer: Professor Jens O. Andersen
Department of Physics, NTNU
Phone: 73593131

Monday December 12 2016
09.00-13.00

Permitted examination support material:

Approved calculator

Rottmann: Matematisk Formelsamling

Rottmann: Matematische Formelsammlung

Barnett & Cronin: Mathematical Formulae

Angell og Lian: Fysiske storrelser og enheter: navn og symboler.

Problem 1

a) Taking the differentials, we obtain

v
dt' = 7(dt—c—2dx)

— ~dt (1 - UCZ) , (1)

dV, V.—v w
r z T
av, = 1_%+(1_%)2§d%. (2)

Dividing Eq. (2) by Eq. (1), we obtain




If S’ is the instantaneous rest frame, we have v = V,, and Eq. (3) reduces to

CL; = ’Ygaw ) (4)
where we have used that 1 — @ =1 — Y% — 1
c v
b) Since a/, = g, Eq. (4) can be written as
av, V2
i g<1_02> ' (5)
or
dV
; = gdt. (6)
(1-%)
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Changing variables, V,, = csinu, we obtain
cdu
oz = gdt . (7)
Integrating yields
ctanu = gt+C, (8)
where C' is an integration constant.
Va
i
Solving with respect to V, this finally yields
B gt+C
Vo) = o (10)
C' = 0 since V,(0) = 0. Thus
gt
Va(t) = N (11)

The limiting velocity is Viim = ¢ as seen from Eq. (11).



c) We have

dr
dt

Changing variables ¢t = g sinh u, we can write

Integration yields

where K is an integration constant. K = 0 since 7(0) = 0. This yields

d) Integrating Eq. (1
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1), we find
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where we have used that z(7 = 0)
into Eq. (16), we finally obtain
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= x(t

= 0) = 0. Substituting Eq.

e) Taking the differentials of ¢ and z yields
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dr =
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Inserting these expressions into the line element and using dy = dy’ and
dz = dz', we find

ds* = —cdt* + dx® + dy? + d2?

= —cdt” (1 + %
C

/

2
) + da"” + dy? + d2"? (20)

f) Since the line element is independent of time, the vector £ = (1,0,0,0) is
a Killing vector. The quantity &€ - p is a conserved quantity along a geodesic.

g) A stationary observer with spatial coordinates (h,0,0) has four-velocity
vector

= <1+W>1§. (21)

The energy of a photon with four-momentum p and frequency w is hw =
—P - Ugps. This yields

hw = —(1—i—g$l>£~p. (22)

hw(l—i—gé/) = —&'p. (23)

The energy of a photon emitted at 2’ = h is denoted by hw;, and the energy
of the same photon absorbed at z’ = h is denoted by hAwy. Eq. (23) then
gives

gh
Wy = Wy <1 + CQ> , (24)

since & - p is constant along the photon’s geodesic.

According to the equivalence principle acceleration is equivalent to a
gravitional field. The blueshift of the photon is an example of this principle.



Problem 2

a) Subtracting one-third of the first Friedman equation from the second
Friedman equation gives
4m 1

a = — 3 Pm + gaA . (25)

where we have used that the pressure p vanishes.

b) For a time-independent solution, we have @ = @ = 0. Equation (25),
then yields

Pro = - (26)
For a static solution the first Friedman equation reduces to

1 C
3@—g = 8mp), + A, (27)

or

c) We write a = a. + da. Note that a = %(5& and @ = ;—;&L since a, is

constant in time. For p = 0, the second Friedman equation can be rewritten
as

2ia+a*+1 = Aad®. (29)
To first order in the perturbation, Eq. (29) reads
d2
QaEcSa +1 = Aa® + 2a.0a) . (30)
Using the result for a., we find
d2
ﬁda = @ s (31)

which corresponds to B = A. This is a second-order differential equation for
da, whose solution is

Sa = Ae¥M 4 Aye VA (32)

where A; and Aj are constants. The perturbation is growing and so the static
Einstein universe is unstable. It is the sign of B that determines the stability
of the solution. For B < 0, the solution for da would involve trigonometric
functions and so the universe would oscillate around the equilibrium solution.



