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Problem 1

a) The nonzero components of the metric can be read off from the line element and are

gtt = −f(r) , grr =
1

f(r)
, gφφ = r2 . (1)

The metric is diagonal. Since the metric is indenpendent of t and φ, there are (at least)
two Killing vectors. These are

ξ = (1, 0, 0) , η = (0, 0, 1) . (2)

1



The associated conserved quantities are u · ξ and u · η

e = −u · ξ = f(r)
dt

dτ
, l = u · η = r2

dφ

dτ
. (3)

Time independence implies energy conservation, while independence of φ implies conserva-
tion of the z-component of the angular momentum.

b) The Christoffel symbols Γγαβ can be calculated from the equation of motion

d

dσ

[
∂L

∂
(
dxµ

dσ

)] =
∂L

∂xµ
, (4)

where L =
(
−gαβ dxdσ

α dx
dσ

β
) 1

2
. We first consider µ = t. Since L is independent of t, the

right-hand side of equation (4) vanishes. We find

∂L

∂
(
dxt

dσ

) = − 1

L
f(r)

dxt

dσ
(5)

Using dτ
dσ = L, we can write ∂L

∂
(
dxt

dσ

) = f(r)dx
t

dτ and the equation of motion becomes

L
d

dτ

[
f(r)

dxt

dτ

]
= 0 . (6)

This yields

f
d2xt

dτ2
+ f ′

dxt

dτ

dxt

dτ
= 0 , (7)

or

d2xt

dτ2
+
f ′

f

dxt

dτ

dxt

dτ
= 0 , (8)

We can then read off the nonzero Christoffel symbols with γ = t

Γtrt = Γttr =
1

2

f ′

f
, (9)

where the prime indicates differentiation with respect to r. The equations of motion for
α = r and α = φ can be calculated in the same manner. We list them for completeness

d2r

dτ2
+

1

2
ff ′

dt

dτ

dt

dτ
− 1

2

f ′

f

dr

dτ

dr

dτ
− rf dφ

dτ

dφ

dτ
= 0 , (10)

d2φ

dτ2
+

2

r

dr

dτ

dφ

dτ
= 0 . (11)
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This gives

Γrtt =
1

2
ff ′ , Γrrr = −1

2

f ′

f
, Γrφφ = −rf Γφrφ = Γφφr =

1

r
. (12)

The other Christoffel symboles are zero.

c) For α = β = φ, we find

Rφφ = ∂γΓγφφ − ∂φΓγφγ + ΓγφφΓδγδ − ΓδφγΓγφδ

= ∂rΓ
r
φφ + ΓγφφΓδγδ − ΓδφγΓγφδ

= ∂rΓ
r
φφ + Γrφφ

[
Γrrr + Γφrφ + Γtrt

]
− ΓrφφΓφφr − ΓφφrΓ

r
φφ

= ∂r [−rf ] +
1

2
rf ′ + f − 1

2
rf ′

= −rf ′ . (13)

The other diagonal components of Rαβ can be calculated in the same manner. This yields

Rtt =
1

2
ff ′′ +

1

2

ff ′

r
, (14)

Rrr = −1

2

f ′′

f
− 1

2

f ′

fr
, (15)

Contracting Rαβ with the metric yields

R = −f ′′ − 2
f ′

r
. (16)

d) The Einstein equation in vacuum reads

Rαβ −
1

2
gαβR = 0 . (17)

This yields

ff ′

r
= 0 , (18)

f ′

fr
= 0 , (19)

f ′′r2 = 0 . (20)

Thus f is constant. We identify the line element as that of Minkowski spacetime for

f = 1 . (21)
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Problem 2

a) We first calculate the differentials in the new coordinates

dφ′ = dφ− Ωdt . (22)

We can therefore make the substitution dφ→ dφ+ Ωdt in the metric. This yields

ds2 = −dt2 + dr2 + r2(dφ− Ωdt)2 + dz2

= −(1− Ω2r2)dt2 + dr2 − 2Ωr2dφdt+ r2dφ2 + dz2 . (23)

The relations r =
√
x2 + y2 and φ = arctan y

x yield

dr =
xdx√
x2 + y2

+
ydy√
x2 + y2

, (24)

dφ =
xdy − ydx
x2 + y2

. (25)

Inserting Eqs. (24) and (25) into (23) and cleaning up, we obtain

ds2 = −[1− Ω2(x2 + y2)]dt2 + 2Ω(ydx− xdy)dt+ dx2 + dy2 + dz2 . (26)

b) In the nonrelativistic limit, we can approximate τ = t. This implies dt
dτ = 1 and

d2t
dτ2

= 0. This yields

d2x

dt2
− 2Ω

dy

dt
− Ω2x = 0 , (27)

d2y

dt2
+ 2Ω

dx

dt
− Ω2y = 0 , (28)

d2z

d2t
= 0 . (29)

c) Eq. (27) can be written as

ax − 2(Ω× v)x − (Ω× (Ω× r))x , (30)

where the subscript x means the x-component. Eqs. (28) and (29) can be written as the y
- and z-components of the same equation. Thus, we have

a− 2A× v −Ω× (Ω× r) = 0 . (31)

Being in a rotating frame of reference, fictitious forces are present. The term −2Ω × v is
the Coriolis force, while the term −Ω× (Ω× r) is the centrifugal force.
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Problem 3

a) We know that the covariant derivative of a scalar is the the usual partial derivative. If
Bβ is a covariant vector s = AβBβ is a scalar and we can write

∆αs =
∂s

∂xα
. (32)

Using the Lebniz’ rule we can also write

∆αA
βBβ =

(
∇αAβ

)
Bβ +Aβ (∇αBβ)

=
∂s

∂xα

= Aβ
∂Bβ
∂xα

+
∂Aβ

∂xα
Bβ . (33)

Substituting the expression for the covariant derivative a contravariant vector in Eq. (33),
we find

Aβ (∇αBβ) + ΓβαγA
γBβ = Aβ

∂Bβ
∂xα

. (34)

Swapping dummy indices β and γ, this reads

Aβ (∇αBβ) + ΓγαβA
βBγ = Aβ

∂Bβ
∂xα

. (35)

Since Aβ is arbitrary, we must have

∇αBβ =
∂Bβ
∂xα

− ΓγαβBγ . (36)

b) As a photon propagates in a gravitational field, its frequency ω changes. For example,
if a photon propagates radially outwards in a Schwarzschild spacetime being emitted at rA
and being detected at rB, the frequencies are related as

ωB =

√√√√1− 2M
rA

1− 2M
rB

, (37)

where M is the mass of the planet. Since rB > rB, we find ωB < ωA, i.e. gravitational
redshift.

c) If an observer sees the same universe in all directions, it is isotropic around the point
in space of the observer. If it is isotropic for all observers in the universe, it is globally
isotropic.

If all observers see the same universe, it is homogeneous. These concepts are not equiv-
alent. A uniform magnetic field in one direction, clearly breaks isotropy, but the universe
can still be homogeneous.
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d) The term FµνF
µµ is gauge invariant as it is constructed out of the field tensor, which

we know is invariant. The second term transforms as

jµA
µ → jµA

µ′

= jµ (Aµ + ∂µχ) . (38)

where χ is a well-behaved function. The change is

∆L = jµ∂
µχ . (39)

The action also changes

∆S =

∫
d4x∆L

=

∫
d4xjµ∂

µχ (40)

This can be written as

∆S =

∫
d4x [∂µ (χjµ)− χ∂µjµ]

=

∫
d4x [∂µ (χjµ)] , (41)

where we have used current conservation, ∂µjµ = 0. The Lagrangian changes by a total
derivative, which is allowed. The action does not change.

Problem 4

We denote the ejected four-momentum by pe and the remaining four-momentum by pf .
The initial four-momentum is denoted by p. Conservation of four-momentum gives

p = pe + pf . (42)

This yields

p2e = −m2 −m2
f − 2pf · p (43)

Since the ejected material has zero rest mass, we have p2e = 0. The initial four-momentum
p is (spaceship at rest)

p = m

 1√
1− 2M

r

, 0, 0, 0

 . (44)
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To evaluate the product pf · p, we only need the zeroth component of the four momentum
pf . This denoted by ptf (r). Conservation of energy gives

ptf (r)

(
1− 2M

r

)
= mfe . (45)

The spaceship must be at rest at r =∞, whence e = 1.

ptf (r) =
mf

1− 2M
r

. (46)

Writing mf = mf , where f is the fraction, and using the expressions for the four-momentum
p , Eq. (43) can be written as

m2(1 + f2)− 2m2f√
1− 2M

r

= 0 . (47)

The solution for f is

f =
1±

√
2M
R√

1− 2M
R

. (48)

The positive solution yields f > 1, which must be rejected on physical grounds. Hence, the
fraction is

f =
1−

√
2M
R√

1− 2M
R

. (49)

The limit is

fhorizon = lim
R→2M

f

= 0 . (50)

Thus, nothing can escape if the spaceship starts at the horizon.
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