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Problem 1

a) The nonzero components of the metric can be read off from the line element and are

1
gt = —f(r) ) Grr = m s Jop = :2 (1)

The metric is diagonal. Since the metric is indenpendent of ¢ and ¢, there are (at least)
two Killing vectors. These are

£=1(1,0,0), n=1(0,0,1). (2)
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The associated conserved quantities are w - £ and w -1

d d
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Time independence implies energy conservation, while independence of ¢ implies conserva-
tion of the z-component of the angular momentum.

b) The Christoffel symbols I'} 5 can be calculated from the equation of motion
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where L = (—gaf;%a%ﬁ> . We first consider ¢ = t. Since L is independent of ¢, the
right-hand side of equation (4) vanishes. We find

= —*f( )0 (5)

Using g—; = L, we can write 5 (Zit) =f (T)C%_t and the equation of motion becomes
d dat
L— — =0 6
[t 0
This yields
d2 t ,dxt dat
f +f ar dr 0, (7)
or
[ dxt dat
LS o, (5)
fdr dr
We can then read off the nonzero Christoffel symbols with v =t
17
Ff‘t = Fir 57 ’ (9)

where the prime indicates differentiation with respect to r. The equations of motion for
a =171 and o = ¢ can be calculated in the same manner. We list them for completeness
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This gives
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The other Christoffel symboles are zero.

c) For a=p = ¢, we find
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The other diagonal components of R,3 can be calculated in the same manner. This yields

Ry = *ff”+1%

1 1 1 /
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Contracting R,g with the metric yields

R = —f'—2 .

d) The Einstein equation in vacuum reads

This yields

Thus f is constant. We identify the line element as that of Minkowski spacetime for
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Problem 2
a) We first calculate the differentials in the new coordinates

d¢/ = d¢— Qdt. (22)
We can therefore make the substitution d¢ — d¢ + Qdt in the metric. This yields

ds® = —dt* + dr® + r’(dp — Qdt)? + dz*
= —(1—Q%)dt? + dr* — 2Qr3dpdt + r2d¢* + d2* . (23)

The relations r = /22 4 y? and ¢ = arctan ¥ yield

o= T vl (24)
Va2 +y? P
xdy — ydx
dp = ————. 25
o - Tl (25)
Inserting Eqgs. (24) and (25) into (23) and cleaning up, we obtain
ds* = —[1 —Q*(2® + y?)|dt* + 2Q(ydx — zdy)dt + dz* + dy? + d=* . (26)
b) In the nonrelativistic limit, we can approximate 7 = t. This implies % = 1 and
j—ié = 0. This yields
o o0® gz, _ g (27)
dt? dt -
d%y
— 20— - Q% = 2
T T2 y 0, (28)
d*z
22— 29
c) Eq. (27) can be written as
a; —2(QxVv); — (X (2 Xr)),, (30)

where the subscript z means the z-component. Eqgs. (28) and (29) can be written as the y
- and z-components of the same equation. Thus, we have

a—2Axv-Qx(2xr) = 0. (31)

Being in a rotating frame of reference, fictitious forces are present. The term —2€2 x v is
the Coriolis force, while the term —€ x (2 X r) is the centrifugal force.



Problem 3

a) We know that the covariant derivative of a scalar is the the usual partial derivative. If
Bg is a covariant vector s = AP Bg is a scalar and we can write

Os
Ays = — . 2
y or® (32)
Using the Lebniz’ rule we can also write
BaA’By = (VaA?) By + A% (VaBp)
_ o
Oz
0B QAP
_ ABYD8 .
o™ + oz P (33)

Substituting the expression for the covariant derivative a contravariant vector in Eq. (33),
we find

AP (VoBg)+T5,A'Bg = AP gff . (34)
Swapping dummy indices S and ~, this reads
AP (VoBg) +T7,A°B, = Aﬁif;ff : (35)
Since AP is arbitrary, we must have
VoBg = gff ~T0,B, . (36)

b) As a photon propagates in a gravitational field, its frequency w changes. For example,
if a photon propagates radially outwards in a Schwarzschild spacetime being emitted at r4
and being detected at rg, the frequencies are related as

— (37)

where M is the mass of the planet. Since rp > rp, we find wp < wy, i.e. gravitational
redshift.

c) If an observer sees the same universe in all directions, it is isotropic around the point
in space of the observer. If it is isotropic for all observers in the universe, it is globally
isotropic.

If all observers see the same universe, it is homogeneous. These concepts are not equiv-
alent. A uniform magnetic field in one direction, clearly breaks isotropy, but the universe
can still be homogeneous.



d) The term F),, F"" is gauge invariant as it is constructed out of the field tensor, which
we know is invariant. The second term transforms as

JuAr = gAY
= Ju(AF+0"x). (38)

where y is a well-behaved function. The change is

AL = j,0". (39)

The action also changes
AS = / d*zAL
— / d*xzj,0"x (40)
This can be written as
AS = / d*z [0" (xjp) — X0"ju]
= [ a0 (i (41)

where we have used current conservation, 0"j, = 0. The Lagrangian changes by a total
derivative, which is allowed. The action does not change.

Problem 4

We denote the ejected four-momentum by p. and the remaining four-momentum by py.
The initial four-momentum is denoted by p. Conservation of four-momentum gives

P = Pet+DPs- (42)
This yields

p; = —m’—mj—2p; p (43)

Since the ejected material has zero rest mass, we have p? = 0. The initial four-momentum
p is (spaceship at rest)

p = m|——,0,0,0] . (44)



To evaluate the product py - p, we only need the zeroth component of the four momentum
ps. This denoted by p'} (r). Conservation of energy gives

i) (1-20) = e (45)

r

The spaceship must be at rest at r = 0o, whence e = 1.

i) = g (46)

r

Writing my = m f, where f is the fraction, and using the expressions for the four-momentum
p, Eq. (43) can be written as

m2(1+f2)—ﬂ = 0. (47)

The solution for f is
(48)

The positive solution yields f > 1, which must be rejected on physical grounds. Hence, the
fraction is

- R
f o= . (49)
1—2M
R
The limit is
fhorizon = RI—I)H21Mf
= 0. (50)

Thus, nothing can escape if the spaceship starts at the horizon.



