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Problem 1

a) Since the four-velocity vector u = ( dt
dτ
, dx
dτ
, 0, 0) is normalized u ·u = −c2, we find

dx

dτ
=

√
c2
(
dt

dτ

)2

− c2

= c sinh(g
c
τ) . (1)
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Integration of dt
dτ

gives

t(τ) =
c

g
sinh(g

c
τ) + t0 , (2)

where t0 is an integration constant. Using t(0) = 0, we find t0 = 0 and

t(τ) =
c

g
sinh(g

c
τ) . (3)

Integrating Eq. (1)

x(τ) =
c2

g
cosh(g

c
τ) + x0 , (4)

where x0 is an integration constant. Using that x(0) = 0, we find x0 = − c2

g
, which

finally gives

x(τ) =
c2

g

[
cosh(g

c
τ)− 1

]
. (5)

From Eqs. (3) and (5), we obtain[
x(τ) +

c2

g

]2
− c2t2(τ) =

c4

g2
, (6)

which is the equation for a hyperbola.

b) The equation for the light ray is x(t) = c(t− t0). The position of the spaceship

NTNU2018 is obtained from Eq. (6) and reads x =
(√

c2t2 + c4

g2
− c2

g

)
. Equating the

two expressions, we find the time t when the signal is received. This yields

c(t− t0) =

√
c2t2 +

c4

g2
− c2

g
. (7)

Solving for t, we find

t =
1

2

t20 − 2 c
g
t0

t0 − c
g

. (8)

This is a positive function in the interval t0 ∈ (0, c
g
) . The time t diverges as t0 → c

g

from below showing that for t0 ≥ c
g

the light signal will never reach the spaceship.

In Fig. 1, we have plotted the time t of the spaceship in units of c
g

(orange line) as a

function of x in units of c2

g
. The red line is the worldline of a photon for t0 = 1

2
c
g
. The

intercept of these curves gives the position and time of reception of a light signal. The
yellow area shows the part of spacetime where no light signal can reach the spaceship.
This area is bounded by the straight line x = c(t− c

g
) and therefore acts as a horizon.
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Figure 1: Hyperbolic motion and light signal.

Problem 2

a) The Hermitian cunjugate of γ5 is

(γ5)† = −i(γ3)†(γ2)†(γ1)†(γ0)† .

Using (γµ)† = γ0γµγ0 and that γµγν = −γνγµ, we can write

(γ5)† = −i(γ0γ3γ0)(γ0γ2γ0)(γ0γ1γ0)(γ0γ0γ0) = −iγ0γ3γ2γ1

= −iγ0γ1γ3γ2 = iγ0γ1γ2γ3

= γ5 . (9)

Thus γ5 is Hermitean.
Since µ = 0, 1, 2 or 3, γµ commute with one of the matrices in γ5 and anticommute

with the remaining three. We therefore get an overall minus sign as we pull γµ to the
left and we find

γ5γµ = (iγ0γ1γ2γ3)γµ

= −γµ(iγ0γ1γ2γ3)

= −γµγ5 . (10)

In other words, γ5 anticommutes with γµ:

{γ5, γµ} = 0 . (11)
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b) Since ψ̄ = ψ†γ0, it transforms as

ψ̄ → ψ†eiαγ
5

γ0 = ψ†γ0e−iαγ
5

= ψ̄e−iαγ
5

, (12)

where we have used that γ5 anticommutes with γ0. The kinetic term then transforms
as

iψ̄γµ∂µψ → iψ̄e−iαγ
5

γµ∂µψe
−iαγ5

= iψ̄e−iαγ
5

eiαγ
5

γµ∂µψ

= iψ̄γµ∂µψ ,

where we have used that γ5 anticommutes with γµ. Hence the kinetic term is invariant
under chiral transformations. The mass term transforms as

mψ̄ψ → mψ̄e−2iαγ
5

ψ , (13)

which is not invariant. The Lagrangian is therefore invariant for m = 0.

c) Under infinitesimal chiral transformations we can write

δψ = −iαγ5ψ , (14)

δψ̄ = −iαγ5ψ̄ , (15)

which yields the deformations ∆ψ = ∆ψ̄ = −iγ5ψ. Furthermore, the partial deriva-
tives are

∂L
∂(∂µψ)

= iψ̄γµ , (16)

∂L
∂(∂µψ̄)

= 0 . (17)

Using Eq. (24) in Useful formulas, the conserved current becomes

jµ = ψ̄γµγ5ψ . (18)

This current is called the axial current since it is a pseuduvector under parity.

Problem 3

a) The Christoffel symbols are

Γαβγ =
1

2
gαµ [∂βgµγ + ∂γgµβ − ∂µgβγ]

=
1

2
ηαµ [∂βhµγ + ∂γhµβ − ∂µhβγ]

=
1

2

[
∂βh

α
γ + ∂γh

α
β − ∂αhβγ

]
, (19)
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where we in the penultimate line have made the approximation gαµ = ηαµ since the
derivative terms ∂αgβγ = ∂αhβγ are of first order. This approximation is used in the
remainder.

b) The Riemann curvature tensor is defined as

Rα
µβν = ∂βΓαµν − ∂νΓαµβ + ΓαβδΓ

δ
µν − ΓανδΓ

δ
µβ . (20)

The products of the Christoffel symbols will be second order in hαβ and therefore we
can write

Rα
µβν =

1

2
∂β
[
∂νh

α
µ + ∂µh

α
ν − ∂αhµν

]
− 1

2
∂ν
[
∂βh

α
µ + ∂µh

α
β − ∂αhµβ

]
=

1

2

[
∂β∂µh

α
ν + ∂ν∂

αhβµ − ∂β∂αhµν − ∂ν∂µhαβ
]
. (21)

c) Contracting α and β, we find the Ricci curvature tensor

Rµν =
1

2

[
∂µ∂ρh

ρ
ν + ∂ν∂ρh

ρ
µ − ∂µ∂νh+ hµν

]
, (22)

where h = hρρ and = −∂ρ∂ρ.

d) The Ricci scalar is

R = ηµνRµν

= h+ ∂µ∂νh
µν . (23)

e) The coordinate transformation implies

∂x′µ

∂xα
= δµα + ∂αξ

µ , (24)

This can be inverted

∂xµ

∂x′α
= δµα − ∂αξµ , (25)

which yields

g′µν = ηµν + h′µν

=
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ

= (δαµ − ∂αξµ)(δβν − ∂βξν)(ηαβ + hαβ)

= ηµν + hµν − ∂µξν − ∂νξµ , (26)

5



and therefore

h′µν = hµν − ∂µξν − ∂νξµ . (27)

f) The transformed field is now

h̄′µν = h̄µν − ∂µξν − ∂νξµ + ηµν∂αξ
α . (28)

Consider the equation

∂µh̄
′µν = 0 . (29)

From Eq. (28), this is equivalent to the equation

∂µh̄
µν − ∂µ∂µξν = 0 . (30)

This equation always has a solution for any reasonably behaved h̄µν and so we can
always use the Lorentz gauge. The field equation is

1

2

[
∂µ∂δh̄

δ
ν + ∂ν∂δh̄

δ
ν + h̄µν

]
− 1

2
ηµν∂

δ∂γh̄δγ = 0 . (31)

Imposing the Lorentz gauge, trivially gives

h̄′µν = 0 . (32)

g) Inserting the plane wave into Eq. (32), we find

Aµνe−ikαx
α

= Aµνe−ikαx
α

k2 , (33)

and is a solution for k2 = 0, i.e. the wavevector is a null vector. The gauge condition
yields

∂µA
µνe−ikαx

α

= ikµA
µνe−ikαx

α

. (34)

or kµA
µν = 0, implying that the wave vector is transverse.

h) The gauge condition A
(TT )
αβ δβ0 = A

(TT )
α0 = 0 implies that the entries of first row

and column of the matrix A(TT ) vanish. Furthermore, transversality yields

kαA
(TT )
αβ = k0A

(TT )
0β + kzA

(TT )
zβ = ω(A

(TT )
0β + A

(TT )
zβ )

= ωA
(TT )
zβ = 0 , (35)
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This implies that the entries of last row and column of the matrix A vanish. We are
now left with four entries. Symmetry of A leaves us with A

(TT )
xy = A

(TT )
yx and three

independent entries. Finally, the traceless condition implies that A
(TT )
xx + A

(TT )
yy = 0.

We can therefore write

ATTµν =


0 0 0 0

0 A
(TT )
xx A

(TT )
xy 0

0 A
(TT )
xy −A(TT )

xx 0
0 0 0 0

 , (36)

where A
(TT )
xx and A

(TT )
xy are two independent constant.
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