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Problem 1
a) Since the four-velocity vector u = (4, £ (),0) is normalized u-u =
2
dr (AN _
dr dr
= csinh(47).
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—c?, we find



Integration of j—i gives

Hr) = Ssinh(27)+1p, 2)
g
where t; is an integration constant. Using ¢(0) = 0, we find ¢, = 0 and
t(r) = Ssinh(r). (3)
g
Integrating Eq. (1)
2
x(7) = c cosh(27) + o , (4)
g
where x( is an integration constant. Using that z(0) = 0, we find zg = —%, which
finally gives
2
x(r) = — [cosh(4r)—1]. (5)
9

From Egs. (3) and (5), we obtain

{x(r) + C;j 2 — Pt (1) = i : (6)

which is the equation for a hyperbola.

le o

b) The equation for the light ray is x(t) = ¢(t — t9). The position of the spaceship

NTNU2018 is obtained from Eq. (6) and reads x = (@ /c2t? + ;—i - %) Equating the

two expressions, we find the time ¢ when the signal is received. This yields

A A2
c(t —ty) = A2+ — — — . 7
(t —to) \/ pi (7)

2 _9c
tzlm (8)
2 to—<
07 g

Solving for ¢, we find

This is a positive function in the interval ¢y € (0, ¢) . The time ¢ diverges as to — ;
from below showing that for ¢, > g the light signal will never reach the spaceship.
In Fig. 1, we have plotted the time t of the spaceship in units of g (orange line) as a
function of x in units of %. The red line is the worldline of a photon for t; = %9. The
intercept of these curves gives the position and time of reception of a light signal. The
yellow area shows the part of spacetime where no light signal can reach the spaceship.
This area is bounded by the straight line 2 = ¢(f — £) and therefore acts as a horizon.
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Figure 1: Hyperbolic motion and light signal.

Problem 2

a) The Hermitian cunjugate of 7° is
(") = =) AN O
Using (7#)1 = 499#4° and that y#9” = —y”~y*, we can write

S)T 0,30 0,2.0 0,1.0 0,0.0 0,321

= =iV )Y YA (YT = =iy

— 270717372 _270,}/1/}/273

=7 (9)

(v

Thus +° is Hermitean.

Since p = 0, 1,2 or 3, y* commute with one of the matrices in v° and anticommute
with the remaining three. We therefore get an overall minus sign as we pull v* to the
left and we find

Y= (I
= — (270717273)
= =" (10)
In other words, * anticommutes with v*:
{7t = 0. (11)
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b) Since 1) = T, it transforms as
U= Ple’? = iyl = et (12)

where we have used that +° anticommutes with 4°. The kinetic term then transforms
as

Wy O — izﬁe’m”’s’y“@we’w‘75
= igﬁe_““s eio"ysfy“é?uw
= WY'ou,
where we have used that 7® anticommutes with v#. Hence the kinetic term is invariant
under chiral transformations. The mass term transforms as

mpy — mpe 20y (13)

which is not invariant. The Lagrangian is therefore invariant for m = 0.

c) Under infinitesimal chiral transformations we can write
5¢ = _i&75w ) (14)
0 = —iay’y, (15)

which yields the deformations Ay = Ay = —iy°). Furthermore, the partial deriva-
tives are

oL -
=yt 16
oL
— = 0. 17
00, "
Using Eq. (24) in Useful formulas, the conserved current becomes
*o= "y (18)

This current is called the axial current since it is a pseuduvector under parity.

Problem 3
a) The Christoffel symbols are
Fa/o"y = %gau (089, + 039u8 — Ougpr]
= %77““ [Ohyy + Oyhyus — Ouhisy ]
1

fry 5 [85ha,y + a'yhaﬂ - aahﬁv] , (19)




where we in the penultimate line have made the approximation g = n“* since the
derivative terms 0,9y = Oyhp, are of first order. This approximation is used in the
remainder.

b) The Riemann curvature tensor is defined as

o o o o o 1) o )

The products of the Christoffel symbols will be second order in ks and therefore we
can write

1 1
Rep, = 508 [0h% + 0uh%, — 0°hyu] — 50, (050, + Ouh% — 0°Dyg]

I

= % [050,h%, 4 0,0%hg, — 050 hy,, — 8,,8Mh°‘5} . (21)

c) Contracting a and (3, we find the Ricci curvature tensor

1
Ru = 5 [0.0,0, +0,0,0, = 0,0,h +0hyu] (22)

where h = h"p and o= —0,0”.

d) The Ricci scalar is

R = n"R,
= oh+ 0,0, . (23)

e) The coordinate transformation implies

ox'™

oz

= 0+ 08", (24)

This can be inverted
oz
ax/a

= b —0.8", (25)
which yields

Gy = M T h:u/

oz Oz

ox'+ ﬁgaﬁ

= (65 — 0°,)(8) — 0°€,) (Nag + hap)

= Nw + h;w - 8}151/ - al/é-,u ) (26)
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and therefore

By = P — 046 — D, . (27)

f) The transformed field is now
M = R — QMY — OV ER Y 0" (28)
Consider the equation
9" = 0. (29)
From Eq. (28), this is equivalent to the equation
b — 9,0M" = 0. (30)

This equation always has a solution for any reasonably behaved h*” and so we can
always use the Lorentz gauge. The field equation is

1 = - _ 1 _
3 [0,05h°, + 8,05h°,, + ohy, | — 577@7507/157 = 0. (31)

Imposing the Lorentz gauge, trivially gives

oh™ = 0. (32)

g) Inserting the plane wave into Eq. (32), we find
DAuue—ikaa:O‘ — Auue—ikam"‘ k}2 ’ (33)

and is a solution for k% = 0, i.e. the wavevector is a null vector. The gauge condition
yields

8“14””6*75’““‘”& = z'k’uA““e*ik“‘”a . (34)
or k, A" = 0, implying that the wave vector is transverse.

h) The gauge condition AéTBT)ég = A%T) = 0 implies that the entries of first row

and column of the matrix ATT) vanish. Furthermore, transversality yields
a A(TT) _ (TT) 2z A(TT) _ (TT) (TT)
ke ATD = ROATD 4 AT = (AT 4 AT
= wA" =0, (35)
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This implies that the entries of last row and column of the matrix A vanish. We are
now left with four entries. Symmetry of A leaves us with AgT) = Al(ng) and three
independent entries. Finally, the traceless condition implies that AED 4 A(y?) = 0.

We can therefore write

0 0
A AG"
A" —AGY

0 0

T
A, =

oS O O O
o O O O
—~
w
D
~—

where A" and AgT) are two independent constant.



