Formalities.

Solutions should be handed in Wednesday 28.10., latest 14.00, in my mailbox (D5-166), by email or in the lectures.

The Reissner-Nordström Solution for a Charged Black Hole.

In this home exam, you will derive step-by-step the solution of the coupled Einstein-Maxwell equations for a point-like particle with mass M and electric charge Q.

a.) Show that a static, isotropic metric can be written as

$$ds^{2} = A(r)dt^{2} - B(r)dr^{2} - r^{2}(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}).$$
(1)

b.) Show that the non-zero components of the Ricci tensor in this metric are given by

$$R_{00} = -\frac{A''}{2B} + \frac{A'}{4B} \left(\frac{A'}{A} + \frac{B'}{B} \right) - \frac{A'}{rB},\tag{2}$$

$$R_{11} = \frac{A''}{2A} - \frac{A'}{4A} \left(\frac{A'}{A} + \frac{B'}{B} \right) - \frac{B'}{rB},\tag{3}$$

$$R_{22} = \frac{1}{B} - 1 + \frac{r}{2B} \left(\frac{A'}{A} - \frac{B'}{B} \right),\tag{4}$$

$$R_{33} = R_{22}\sin^2\vartheta,\tag{5}$$

where we order coordinates as $x^{\mu} = (t, r, \vartheta, \phi)$. You may use a program of your choice to do this calculation; if so, attach the code/output you used/produced. If you do the calculation "by hand", it is sufficient to calculate one of the 4 non-zero elements.

c.) Consider next the inhomogenous Maxwell equation for a point charge in the metric (1). Show that the inhomogeneous Maxwell equation,

$$\nabla_{\mu}F^{\mu\nu} = \frac{1}{\sqrt{|g|}}\partial_{\mu}(\sqrt{|g|}F^{\mu\nu}) = j^{\nu},$$

implies for the electric field

$$E(r) = \frac{\sqrt{ABQ}}{4\pi r^2}.$$

- d.) Determine the non-zero contributions of the electric field to the stress tensor $T_{\mu\nu}$ and show that the Einstein equations simplify (using also $\Lambda=0$) to $R_{\mu\nu}=-\kappa T_{\mu\nu}$. Give the explicit form of the Einstein equations.
- e.) Combine the R_{00} and R_{11} equations, and use (2) and (3) to show that A(r)B(r) = 1.
- f.) Use the R_{22} component to determine A(r) and B(r).
- g.) What are the physical and coordinate singularities, the horizons of the Reissner-Nordström BH solution?

a.) A stationary spacetime has a time-like Killing vector field. In appropriate coordinates, the metric tensor is therefore independent of the time coordinate,

$$ds^2 = g_{00}(\boldsymbol{x})dt^2 + 2g_{0i}(\boldsymbol{x})dtdx^i + g_{ij}(\boldsymbol{x})dx^idx^j.$$
(6)

A stationary spacetime is static if it is invariant under time reversal. Thus the off-diagonal terms g_{0i} have to vanish, and the metric simplifies to

$$ds^2 = g_{00}(\mathbf{x})dt^2 + g_{ij}(\mathbf{x})dx^i dx^j.$$
(7)

Finally, isotropy requires that only $r^2 \equiv \boldsymbol{x} \cdot \boldsymbol{x}$, $d\boldsymbol{x} \cdot \boldsymbol{x}$, and $d\boldsymbol{x} \cdot d\boldsymbol{x}$ enter the spatial line-element dl^2 . Hence

$$dl^{2} = C(r)(\boldsymbol{x} \cdot d\boldsymbol{x})^{2} + D(r)(d\boldsymbol{x} \cdot d\boldsymbol{x})^{2} = C(r)r^{2}dr^{2} + D(r)[dr^{2} + r^{2}d\vartheta^{2} + r^{2}\sin^{2}\vartheta d\varphi^{2}]$$
(8)

We can eliminate the function D(r) by the rescaling $r^2 \to Dr^2$. Thus the line-element becomes with $g_{00}(r) = A(r)$

$$ds^{2} = A(r)dt^{2} - B(r)dr^{2} - r^{2}(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}).$$

$$\tag{9}$$

c.) The electric field measured by an observer with four-velocity u_{α} is $E_{\alpha} = F_{\alpha\beta}u^{\beta}$, i.e. it is associated with the field-strength tesnor with lowe indices. For a static charge at r = 0, the only non-zero field component is the radial electric field, $F_{01} = -F_{10} = E(r)$. Raising the indices, we have $F^{01} = g^{00}g^{11}F^{01} = E/(AB)$. Next we determine the determinant of the metric, obtaining

$$\sqrt{|g|} = \sqrt{ABr^2 \sin^2 \vartheta}.$$
 (10)

For r > 0, the current j^{μ} is zero and thus

$$\partial_r \left(\sqrt{AB} r^2 F^{01} \right) = \partial_r \left(\frac{r^2 E}{\sqrt{AB}} \right) = 0$$
 (11)

can be integrated, with the result

$$E(r) = \frac{\sqrt{ABQ}}{4\pi r^2}. (12)$$

Here, the integration constant k can be identified with $Q/(4\pi)$, because of $A, B \to 1$ for $r \to \infty$. [The homogenous Maxwell equation is automatically satisfied, since there exists a potential A_0 with $E(r) = -\partial_r A_0$.]

d.) For a free electromagnetic field, it is always

$$T^{\mu}_{\mu} = -F_{\mu\sigma} F^{\mu\sigma} + \frac{1}{4} \delta^{\mu\mu} F_{\sigma\tau} F^{\sigma\tau} = 0.$$
 (13)

Thus the Einstein equation becomes

$$R_{\mu\nu} = -\kappa (T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T) + g_{\mu\nu}\Lambda = \kappa T_{\mu\nu}.$$
 (14)

Evaluating

$$T_{\mu\nu} = -F_{\mu\sigma} F_{\nu}^{\ \sigma} + \frac{1}{4} \eta_{\mu\nu} F_{\sigma\tau} F^{\sigma\tau} \tag{15}$$

using also $F_0^{\ 1} = g^{11}F_{01} = E/B$ and $F_1^{\ 0} = g^{00}F_{10} = E/A$, we find that they are given explicitely (setting $\kappa = 1$) by

$$R_{00} = -E^2/(2B), (16)$$

$$R_{11} = E^2/(2A), (17)$$

$$R_{22} = -E^2 r^2 / (2AB), (18)$$

$$R_{33} = R_{22}\sin^2\vartheta. \tag{19}$$

e.) Combining (16) and (17), it follows

$$BR_{00} + AR_{11} = 0. (20)$$

Next we insert (2) and (3), obtaining

$$A'B + AB' = 0. (21)$$

Then (AB)' = 0 or AB = const. Assuming that spacetime becomes Minkowskian at large distance, it follows A(r)B(r) = 1.

Remark: We see now that the choice of the radial coordinate in (1) is such that r corresponds to the "luminosity distance" or, in other words, such that a $1/r^2$ law is valid for the flux from a point source.

f.) We insert AB = 1 and (12) into (18),

$$R_{22} = -E^2 r^2 / (2AB) = -\frac{1}{2} E^2 r^2 = -\frac{1}{2} \frac{Q^2}{(4\pi)^2 r^2}.$$
 (22)

Next we simplify (4) using AB = 1, obtaining

$$R_{22} = A - 1 + A'r (23)$$

and thus

$$A + A'r = 1 - \frac{1}{2} \frac{Q^2}{(4\pi)^2 r^2}.$$
 (24)

Using A + A'r = (Ar)' and integrating, it follows

$$A(r) = 1 + \frac{k}{r} + \frac{Q^2}{2(4\pi)^2 r^2} = 1 - \frac{2GM}{r} + \frac{GQ^2}{4\pi r^2}$$
 and $B(r) = 1/A(r)$, (25)

where the integration constant k was fixed by requiring that we obtain the Schwarzschild metric for Q = 0. In the last step, we changed also from $\kappa = 1$ to $\kappa = 8\pi G$.

g.) We set now G = 1. For $Q^2/(4\pi) < M^2$, two horizons are given by the solution of A = 0, or

$$r_{\pm} = M \pm \sqrt{M^2 - Q^2/(4\pi)}.$$
 (26)

Possibly singularities are given by B=0, i.e. at r=0 and r=. Calculating the invariant $R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$, we see that the latter is a coordinate singularity, while the former is a physical one.

Sign convention.

The signs of the metric tensor, Riemann's curvature tensor and the Einstein tensor can be fixed arbitrarily,

$$\eta^{\alpha\beta} = S_1 \times [-1, +1, +1, +1], \tag{27a}$$

$$R^{\alpha}_{\beta\rho\sigma} = S_2 \times [\partial_{\rho}\Gamma^{\alpha}_{\beta\sigma} - \partial_{\sigma}\Gamma^{\alpha}_{\beta\rho} + \Gamma^{\alpha}_{\kappa\rho}\Gamma^{\kappa}_{\beta\sigma} - \Gamma^{\alpha}_{\kappa\sigma}\Gamma^{\kappa}_{\beta\rho}], \tag{27b}$$

$$S_3 \times G_{\alpha\beta} = 8\pi G \, T_{\alpha\beta},\tag{27c}$$

$$R_{\alpha\beta} = S_2 S_3 \times R^{\rho}_{\ \alpha\rho\beta}. \tag{27d}$$

Here we choose these three signs as $S_i = \{-, +, -\}.$