NTNU Trondheim, Institutt for fysikk

Examination for FY3464 Quantum Field Theory I

Contact: Michael Kachelrieß, tel. 99890701

Allowed tools: mathematical tables

1. Procca equation.

 ~ 25 points

A massive spin-1 particle satisfies the Procca equation,

$$(\eta^{\mu\nu}\Box - \partial^{\mu}\partial^{\nu}) A_{\nu} + m^2 A^{\mu} = 0. \tag{1}$$

- a.) "Derive" the Procca equation combining Lorentz invariance with your knowledge how many spin states a massive spin-1 particle contains.
- b.) Derive the propagator $D_{\mu\nu}(k)$ of a massive spin-1 particle. [You don't have to care how the pole is handeled.]
- c.) Why is the limit $m \to 0$ in your result for b.) ill-defined? [max. 50 words]
- d.) Write down the generating functional Z[J] for this theory.
- e.) How does one obtain connected Green functions $G(x_1, ..., x_n)$ from the generating functional Z[J]?

2. Gauge invariance.

 ~ 17 points

Consider a local gauge transformation

$$U(x) = \exp\left[ig\sum_{a=1}^{m} \vartheta^{a}(x)T^{a}\right]$$
 (2)

which changes a vector of fermion fields ψ with components $\{\psi_1, \ldots, \psi_n\}$ as

$$\psi(x) \to \psi'(x) = U(x)\psi(x). \tag{3}$$

Assume that U are elements of a non-abelian gauge group.

a.) Derive the transformation law of $A_{\mu} = A_{\mu}^{a} T^{a}$ under a gauge transformation. One way is to require that i) the covariant derivatives transform in the same way as ψ ,

$$D_{\mu}\psi(x) \to [D_{\mu}\psi(x)]' = U(x)[D_{\mu}\psi(x)].$$
 (4)

and ii) that the gauge field should compensate the difference between the normal and the covariant derivative,

$$D_{\mu}\psi(x) = [\partial_{\mu} + igA_{\mu}(x)]\psi(x). \tag{5}$$

b.) Writing down the generating functional Z[J] for this theory in the same way as in 1.d) results in an ill-defined expression. Why? Which solution do you suggest? [max. 50]

words]

c.) Draw the Feynman rules (only the diagrams, no specific rules like $(p^{\mu} - p'^{\mu})\gamma_{\mu}...$, group or other factors) for this theory. (The number of diagrams depends on your suggested solution in b.))

3. Scale invariance.

 ~ 15 points

Consider a massless scalar field with ϕ^4 self-interaction,

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{\lambda}{4!} \phi^4 \,. \tag{6}$$

in d = 4 space-time dimensions.

- a.) Find the equation of motion for $\phi(x)$.
- b.) Assume that $\phi(x)$ solves the equation of motion and define a scaled field

$$\tilde{\phi}(x) \equiv e^{Da} \phi(e^a x) , \qquad (7)$$

where D is a constant. Show that the scaled field $\tilde{\phi}(x)$ is also a solution of the equation of motion, provided that the constant D is choosen appropriately.

c.) Bonus question: Argue, if the classical symmetry (7) is (not) conserved on the quantum level. [max. 50 words]

4. Dirac (quiz).

 ~ 10 points

a.) Helicity of a free massive particle is invariant under Lorentz transformations:

yes \square , no \square

Chirality of a free massive particle is invariant under Lorentz transformations

yes \square , no \square

b.) Helicity of a free massive particle is a conserved quantity

yes \square , no \square

Chirality of a free massive particle is a conserved quantity

yes \square , no \square

- c.) Decompose a Dirac spinor ψ_D into Majorana spinors ψ_M .
- d.) The bilinear $\phi_R^{\dagger} \sigma^{\mu} \phi_R$ transforms as ... under proper Lorentz transformations, as ... under parity (where ϕ_R is a Weyl spinor).