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FY3464 Quantum Field Theory 1 Final exam 21.05.2019

NTNU Trondheim, Institutt for fysikk

Examination for FY3464 Quantum Field Theory I

Conta
t: Mi
hael Ka
helrie�, tel. 99890701

Allowed tools: mathemati
al tables

1. S
alar �eld and s
ale invarian
e.

Consider a 
omplex, s
alar �eld � with mass m and self-intera
tion g�

n

.

a.) Write down the Lagrange density L , explain your 
hoi
e of signs and pre-fa
tors (when

physi
ally relevant). (5 pts)

b.) Determine the mass dimension in d = 4 spa
e-time dimensions of all quantities in the

Lagrange density L . Choose n su
h that the 
oupling g is dimensionless. (5 pts)


.) Set now m = 0 and 
onsider a real s
alar �eld �. Find the equation of motion for �(x).

(4 pts)

d.) Assume that �(x) solves the equation of motion and de�ne a s
aled �eld

~

�(x) � e

Da

�(e

a

x) ; (1)

where D and a are 
onstants. Show that the s
aled �eld

~

�(x) is also a solution of the

equation of motion, provided that the 
onstant D is 
hoosen appropriately. (6 pts)

e.) Bonus question: Argue, if the 
lassi
al symmetry (1) is (not) 
onserved on the quantum

level. [max. 50 words℄ (2 pts)

2. Fermion �eld.

Consider a massless Dira
 �eld  with Lagrangian

L =

�

 (i�=) :

a.) Derive the propagator S

F

(p) of the �eld  . [You do not have to dis
uss how the poles

of S

F

(p) are treated.℄ (4 pts)

b.) Write down the generating fun
tional for dis
onne
ted Green fun
tions for this theory.

(4 pts)


.) Show that the Lagrange density L is invariant under global ve
tor phase transfor-

mations U

V

(1),  !  

0

= e

i#

 , and under global axial phase transformations U

A

(1),

 !  

0

= e

i#


5

 . (6 pts)

d.) Show that global symmetry under ve
tor phase transformation U

V

(1) 
an be made

lo
al, if a 
oupling to a gauge boson is added. (5 pts)

e.) Draw the divergent one-loop diagrams and determine their super�
ial degree of diver-

gen
e D (in d = 4 spa
e-time dimensions) for the theory 
oupled to a gauge boson. (8

pts)
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3. Unitarity.

a.) Derive the opti
al theorem

2=T

ii

=

X

n

T

�

in

T

ni

:

Give a physi
al interpretation of this relation (less than 50 words). (6 pts)

b.) The va
uum polarisation of a photon,

q q

= �

��

(q

2

) = (q

2

�

��

� q

�

q

�

)�(q

2

)

is given in dimensional regularisation by

�(q

2

) = �

e

2

12�

2

�

1

"

� 
 + ln(4�)� 6

Z

1

0

dx x(1� x) ln

�

m

2

� q

2

x(1� x)

�

2

��

:

Show that gauge invarian
e, q

�

�

��

(q) = 0, implies as tensor stru
ture of the va
uum

polarisation tensor �

��

(q) = (q

2

�

��

� q

�

q

�

)�(q

2

). (4 pts)


.) Derive the imaginary part of the va
uum polarisation, =[�(q

2

)℄. (6 pts)

d.) How does the imaginary part of the va
uum polarisation 
hanges, if the renormalisation

s
heme is 
hanged? (4 pts)

Useful formulas

f


�

; 


�

g = 2�

��

: (2)

f


�

; 


5

g = 0 and (


5

)

2

= 1 : (3)

�

��

=

i

2

[


�

; 


�

℄ (4)

� = 


0

�

y




0

(5)

1

ab

=

Z

1

0

dz

[az + b(1� z)℄

2

: (6)

1

k

2

+m

2

=

Z

1

0

ds e

�s(k

2

+m

2

)

(7)

I

0

(!; �) =

Z

d

2!

k

(2�)

2!

1

[k

2

�m

2

+ i"℄

�

= i

(�1)

�

(4�)

!

�(�� !)

�(�)

[m

2

� i"℄

!��

: (8)

I(!; 2) = i

1

(4�)

!

�(2� !)

�(2)

1

[m

2

� q

2

z(1� z)℄

2�!

: (9)

= ln(x+ i") = �� (10)
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