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FY3464 QUANTUM FIELD THEORY I
Wednesday october 17, 2007

This solution consists of 4 pages.

Problem 1.
Consider the model defined by the Lagrangian density

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 + λϕE ·B, (1)

where ϕ is a real scalar field, E = −Ȧ, and B = ∇×A.

a) Find the canonically conjugate field Πϕ of ϕ.

Πϕ =
∂L
∂ϕ̇

= ϕ̇. (2)

b) Find the canonically conjugate field ΠA of A.

ΠA =
∂L
∂Ȧ

= − ∂L
∂E

= −λϕB. (3)

c) Find the Hamiltonian density H of this model.

H = Πϕϕ̇+ ΠA ·A− L =
1
2
Π2

ϕ +
1
2
∇ϕ ·∇ϕ+

1
2
m2ϕ2. (4)

d) We use natural units. What is the mass dimension of the coupling parameter λ:

(i) In 4 space-time dimensions? (ii) In d space-time dimensions?

By comparing dimensions between the first two terms in the Lagrangian (1),[
m2 ϕ2

]
= [m]2 [ϕ]2 = [∂µϕ∂

µϕ] = `−2 [ϕ]2 ,

we note that mass and length dimensions are inverse in natural units (as is also obvious
from the expression for Compton wavelength). From the fact that the action S =∫

ddxL must be dimensionless (dimension of ~) it follows that L must have dimension
`−d = [∂µϕ∂

µϕ] = [ϕ]2 `−2, i.e. that

[ϕ] = `(2−d)/2 = [m](d−2)/2 .
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The dimension of E ·B cannot be read out of the Lagrangian (1), although it can be
seen that [E] = [B] from their relations to A. This was an oversight in the exam set;
it was assumed that the dimensions are the same as in the “standard” case, when there
is a term LMaxwell = 1

2

(
E2 −B2

)
in the Lagrangian. This leads to the result that that

[E] = [B] = md/2. It now follows that

[λ] = [m]d [ϕ]−1 [E ·B]−1 = [ϕ]−1 = [m](2−d)/2 . (5)

I.e, the mass dimension is −1 in the case when d = 4.

e) Find the Euler Lagrange equation for ϕ.

We find that
∂L
∂∂µϕ

= ∂µϕ and
∂L
∂ϕ

= −m2ϕ+ λE ·B,

so that the Euler Lagrange equation,

∂µ
∂L
∂∂µϕ

=
∂L
∂ϕ

,

becomes (
� +m2

)
ϕ = λE ·B. (6)

f) Find the Euler Lagrange equation for A.

It is convenient to first write

E ·B = −ε`jkȦ` ∂jA
k = −εjk`Ȧj ∂kA

`,

so that we find

∂L
∂Ȧ`

= −λϕ ε`jk∂jA
k = −λϕB` and

∂L
∂kA`

= −λϕ εjk`Ȧj .

Thus, the Euler-Lagrange equation becomes

−λ
[
∂0(ϕB`)− ε`kj∂k(ϕȦj)

]
= −λ

(
ϕ̇B` + ε`kjEj∂kϕ

)
− λϕ

[
Ḃ` − (∇× Ȧ)`

]
.

The last term on the right vanishes. Assuming λ 6= 0 we arrive at the equation

Bϕ̇−E ×∇ϕ = 0. (7)

Comment: By introducing the electromagnetic field tensor Fµν = ∂νAµ − ∂µAν , and its dual field
tensor F̃µν = 1

2
εµνλσ Fλσ, this equation can be written in manifestly covariant form1,

F̃µν ∂νϕ = 0. (8)

1We have the relations Ei = F 0i = − 1
2
εijk F̃ jk, and Bi = F̃ 0i = 1

2
εijk F jk. I.e. the duality transformation

Fµν → F̃µν amounts to (E,B) → (B,−E).
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g) The Lagrangian density L is invariant under the transformation

A(x, t) → A′(x, t) = A(x, t) + ∇Λ(x),

for all differentiable functions Λ(x). Use the Nöther theorem to find the corresponding conserved Nöther

current JΛ.

The general expression for the Nöther current is

Jµ =
∂L

∂∂µΦa
δΦa, (9)

where Φa runs over all available fields. Here we have δϕ = 0 and δA = ∇Λ. Thus we
find

J0
Λ =

∂L
∂Ȧ

·∇Λ = −λϕB ·∇Λ, (10)

Jk
Λ = λϕ εjk`Ej∂`Λ = −λϕ (E ×∇Λ)k . (11)

Comment: By introducing the dual field tensor this can also be written in manifestly covariant form

Jµ
Λ = −λϕ F̃µν∂νΛ. (12)
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Problem 2.
The field expansion of the free electromagnetic field in Coulomb gauge is

A(x) =
X
k,r

1p
2|k|V

“
ak,r êk,r e−ikx + hermitian conjugate

”
. (13)

Then the matrix element 〈Ω| aq,s A(x) |Ω〉 equals

A. 0

B. 1√
2|q|V

êq,s e−iqx

C. aq,s

D. 1√
2|q|V

ê∗q,s eiqx X

E. None of the alternatives above.

Problem 3.
Let T be the time ordering operator, and ϕ(x), ϕ†(x) quantized complex Klein Gordon fields. Then we have

(in natural units, i.e. when ~ = c = 1)

A. T
{
ϕ(x)ϕ†(y)

}
= T

{
ϕ†(y)ϕ(x)

}
X

B. T
{
ϕ(x)ϕ†(y)

}
= T

{
ϕ†(y)ϕ(x)

}
+ iGF (x− y)

C. T
{
ϕ(x)ϕ†(y)

}
= T

{
ϕ†(y)ϕ(x)

}
− iGF (x− y)

D. T
{
ϕ(x)ϕ†(y)

}
= −T

{
ϕ†(y)ϕ(x)

}
− iGF (x− y)

E. None of the alternatives above.

Here GF (x− y) is the Feynman propagator for a complex Klein Gordon field.

Problem 4.
The Dirac equation ˆ

i
`
γ0∂0 + γ ·∇

´
−m

˜
ψ(x0,x) = 0

is invariant under space inversion (parity transformation), x → −x. I.e, if ψ(x0,x) solves the Dirac equation

then so does ψP (x0,x), where

A. ψP (x0,x) = iγ2 ψ∗(x0,−x)

B. ψP (x0,x) = γ1 γ3 ψ∗(x0,−x)

C. ψP (x0,x) = ψ(x0,−x)
D. ψP (x0,x) = γ0 ψ(x0,−x) X

E. ψP (x0,x) = ψ∗(−x0,−x)


