
FY3464 Quantum Field Theory 1 Final exam 03.06.2014

NTNU Trondheim, Institutt for fysikk

Examination for FY3464 Quantum Field Theory I
Contact: Michael Kachelrieß, tel. 99890701
Allowed tools: mathematical tables

1. Procca equation. ∼ 25 points
A massive spin-1 particle satisfies the Procca equation,

(ηµν✷− ∂µ∂ν)Aν +m2Aµ = 0 . (1)

a.) “Derive” the Procca equation combining Lorentz invariance with your knowledge how
many spin states a massive spin-1 particle contains.
b.) Derive the propagator Dµν(k) of a massive spin-1 particle. [You don’t have to care
how the pole is handeled.]
c.) Why is the limit m→ 0 in your result for b.) ill-defined? [max. 50 words]
d.) Write down the generating functional Z[J ] for this theory.
e.) How does one obtain connected Green functions G(x1, . . . , xn) from the generating
functional Z[J ]?

a.) Lorentz invariance requires that all four components of the free field Aµ satisfy the Klein-
Gordon equation,

(

✷+m2
)

Aµ(x) = 0. Additionally, we have to impose one constraint in order
to eliminate one component. The only linear, Lorentz invariant possibility is ∂µA

µ = 0. To show
the equivalence, act with ∂µ on it,

(∂ν✷−✷∂ν)Aν +m2∂µA
µ = m2∂µA

µ = 0 . (2)

Hence, a solution of the Proca equation fulfils automatically the constraint ∂µA
µ = 0 for m2 > 0.

On the other hand, we can neglect the second term in (1) for ∂νA
ν = 0 and obtain the Klein-

Gordon equation.

b.) The propagator Dµν is the Green function of the corresponding differential operator. Hence
for a massive spin-1 field, it is determined by

[

ηµν(✷+m2)− ∂µ∂ν
]

Dνλ(x) = δµλδ(x) . (3)

Performing a Fourier transformation gives
[(

−k2 +m2
)

ηµν + kµkν
]

Dνλ(k) = δµλ . (4)

Use now the tensor method to solve this equation: In this approach, we use first all tensors
available in the problem to construct the required tensor of rank 2. In the case at hand, we have
at our disposal only the momentum kµ of the particle—which we can combine to kµkν—and the
metric tensor ηµν . Thus the tensor structure of Dµν(k) has to be of the form

Dµν(k) = Aηµν +Bkµkν (5)
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with two unknown scalar functions A(k2) andB(k2). Inserting this ansatz into (4) and multiplying
out, we obtain

[

(−k2 +m2)ηµν + kµkν
]

[Aηνλ +Bkνkλ] = δµλ ,

−Ak2δµλ +Am2δµλ +Akµkλ +Bm2kµkλ = δµλ ,

−A(k2 −m2)δµλ + (A+Bm2)kµkλ = δµλ . (6)

In the last step, we regrouped the LHS into the two tensor structures δµλ and kµkλ. A comparison
of their coefficients gives then A = −1/(k2 −m2) and

B = − A

m2
=

1

m2(k2 −m2)
.

Thus the massive spin-1 propagator follows as

Dµν
F (k) =

−ηµν + kµkν/m2

k2 −m2 + iε
. (7)

Alternative: Rewrite the Lagrange density for the Procca field as,

L = −1

4
FµνF

µν +
1

2
m2AµA

µ = −1

2
AµDµνA

ν (8)

see sec. 7.3.1 of the notes for details.

c.) A massless spin-1 particle couples to a conserved current, ∂µJ
µ(x) = 0 or kµJ

µ(k) = 0.

Technically, this means that the B term becomes undefined and the procedure fails.

More physically, we know that a massless spin-1 particle is tranverse. Thus the corresponding

operator in (3) for a massless particle is a projection operator which has one eigenvalue zero

corresponding to the longitudinal direction. However, a matrix with zero eigenvalues cannot be

inverted.

d.) With DAµ ≡ DA0 · · ·DA3 it is

Z[Jµ] =

∫

DAµ exp{i
∫

d4x(L (x) + JµA
µ} = eiW [J ] (9)

where L is given by (8).

e.) The generating functional for connected n-point functions G(x1, . . . , xn) is W [J ],

G(x1, . . . , xn) =
1

in
δn

δJ(x1) · · · δJ(xn)
iW [J ]

∣

∣

∣

∣

J=0

. (10)
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2. Gauge invariance. ∼ 17 points
Consider a local gauge transformation

U(x) = exp[ig
m
∑

a=1

ϑa(x)T a] (11)

which changes a vector of fermion fields ψ with components {ψ1, . . . , ψn} as

ψ(x) → ψ′(x) = U(x)ψ(x) . (12)

Assume that U are elements of a non-abelian gauge group.
a.) Derive the transformation law of Aµ = Aa

µT
a under a gauge transformation. One way

is to require that i) the covariant derivatives transform in the same way as ψ,

Dµψ(x) → [Dµψ(x)]
′ = U(x)[Dµψ(x)] . (13)

and ii) that the gauge field should compensate the difference between the normal and the
covariant derivative,

Dµψ(x) = [∂µ + igAµ(x)]ψ(x) . (14)

b.) Writing down the generating functional Z[J ] for this theory in the same way as in
1.d) results in an ill-defined expression. Why? Which solution do you suggest? [max. 50
words]
c.) Draw the Feynman rules (only the diagrams, no specific rules like (pµ−p′µ)γµ . . ., group
or other factors) for this theory. (The number of diagrams depends on your suggested
solution in b.))

a.) Combining both requirements gives

Dµψ(x) → [Dµψ]
′ = UDµψ = UDµU

−1Uψ = UDµU
−1ψ′ , (15)

and thus the covariant derivative transforms as D′
µ = UDµU

−1. Using its definition (14), we find

[Dµψ]
′ = [∂µ + igA′

µ]Uψ = UDµψ = U [∂µ + igAµ]ψ . (16)

We compare now the second and the fourth term, after having performed the differentiation
∂µ(Uψ). The result

[(∂µU) + igA′
µU ]ψ = igUAµψ (17)

should be valid for arbitrary ψ and hence we arrive after multiplying from the right with U−1 at

Aµ → A′
µ = UAµU

−1 +
i

g
(∂µU)U−1 = UAµU

−1 − i

g
U∂µU

−1 . (18)

Here we used also ∂µ(UU
−1) = 0.

b.) We should integrate only over physically different field configuration; the gauge symmetry

makes the path integral ill-defined, adding a factor Ω× R
4 = ∞ where Ω is the “volume” of the
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gauge group.

Solution: i) Fix the gauge completely, as in the Coulomb gauge in QED; this selects a certain

Lorentz frame. ii) Use a covariant gauge (e.g. Rξ); compensate the remaining unphysical degrees

of freedom by adding Faddeev-Popov ghosts.

c.) Using solution ii), the vertices shown in 7.A follow: triple gauge interactions, quartic gauge

interactions, two ghost gauge interaction. Using solution i) the last vertex is absent.

3. Scale invariance. ∼ 15 points
Consider a massless scalar field with φ4 self-interaction,

L =
1

2
(∂µφ)

2 − λ

4!
φ4 . (19)

in d = 4 space-time dimensions.
a.) Find the equation of motion for φ(x).
b.) Assume that φ(x) solves the equation of motion and define a scaled field

φ̃(x) ≡ eDaφ(eax) , (20)

where D is a constant. Show that the scaled field φ̃(x) is also a solution of the equation of
motion, provided that the constant D is choosen appropriately.
c.) Bonus question: Argue, if the classical symmetry (20) is (not) conserved on the quantum
level. [max. 50 words]

a.) Using the Lagrange equation or varying directly the action gives

✷φ+
λ

3!
φ3 = 0 .

b.) Set y = eax. Then
∂

∂xµ
=
∂yµ

∂xµ
∂

∂yµ
= ea

∂

∂yµ

and ✷x = e2a✷y. Then φ̃ satisfies the equation of motion,

✷xφ̃+
λ

3!
φ̃3 = e(2+D)a

✷xφ+ e3Da λ

3!
φ3

!
= e3a

[

✷xφ+
λ

3!
φ3

]

!
= 0 .

if we choose D = 1. Thus the scalar field should scale as its “naive” dimension suggests.

c.) Bonus: We discussed in Exercise sheet 7 scale invariance and noted as requirement that the

classical Lagrangian contains no dimension-full parameters (which would fix scales). But loop

corrections introduce necessarily a scale (µ in DR, Λ as cutoff). As a consequence, scale invariance

is broken by quantum corrections.
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Remarks: 1. As alternative in b), one can check the transformation of the action; surprisingly,

you find then the contraint D = 1 and d = 4.

2. If we do not assume a = const., we leave Minkowski space and have to consider the scalar field

in a general space-time. Then one finds that the action is invariant under this transformation

with an arbitrary, postive function a(x), if one adds (in d = 4) a coupling −Rφ2/6 between φ

and the curvature scalar R.

4. Dirac (quiz). ∼ 10 points
a.) Helicity of a free massive particle is invariant under Lorentz transformations:

yes ✷ , no ✷

Chirality of a free massive particle is invariant under Lorentz transformations
yes ✷ , no ✷

b.) Helicity of a free massive particle is a conserved quantity
yes ✷ , no ✷

Chirality of a free massive particle is a conserved quantity
yes ✷ , no ✷

c.) Decompose a Dirac spinor ψD into Majorana spinors ψM .
d.) The bilinear φ†

Rσ
µφR transforms as . . . under proper Lorentz transformations, as . . .

under parity (where φR is a Weyl spinor).

a.) no, yes; b) yes, no

c.) A Majorana spinor satisfiesψc
M = eiηψM . Thus we can contruct the two linearly independent

Majorana spinors

ψM,1 =
1√
2
(ψD + ψc

D) , (21)

ψM,2 =
1√
2
(ψD − ψc

D) . (22)

out of a Dirac spinor ψD, or solving for ψD,

ψD =
1√
2
(ψM,1 + ψM,2)

d.) ...vector... negative parity/axial vecor
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