
FY3464 Quantum Field Theory 1 Final exam 04.06.2015

NTNU Trondheim, Institutt for fysikk

Examination for FY3464 Quantum Field Theory I

Contact: Michael Kachelrieß, tel. 99890701
Allowed tools: mathematical tables

1. Spin zero.

Consider a real, scalar field φ with mass m and a quartic self-interaction proportional to
λ in d = 4 space-time dimensions. (4 pts)
a.) Write down the Lagrange density L , explain your choice of signs and pre-factors (when
physically relevant). (4 pts)
b.) Determine the mass dimension of all quantities in the Lagrange density L . (6 pts)
c.) Draw the Feynman diagrams for φφ→ φφ scattering at O(λ2), determine the symmetry
factor of these diagrams, and write down the expression for the Feynman amplitude iA of
this process in momentum space. (8 pts)
d.) The one loop correction to the scalar propagator is

G(2)(p) =
i

p2 −m2 − iλ
2
∆F (0) + iε

. (1)

Calculate the self-energy or mass correction δm2 = iλ
2
∆F (0) in dimensional regularisation

(DR). You should end up with something of the form (10 pts)

δm2 = λm2[a/ε+ b+ c ln(µ2/m2)] . (2)

e.) What is your interpretation of the dependence of δm2 on the parameter µ in Eq. (2)?
[max. 50 words or one formula without explicit calculation is enough] (4 pts)

a. We have first to decide which signature we use for the metric, and choose (+,−,−,−). A
Lagrange function has the form L = T − V , and thus φ̇2 should have a positive coefficient, while
all other terms are negative. Thus we choose the Lagrange density as

L = A(φ̇2 − (∇φ)2)−Bm2φ2 − C
λ

4!
φ4 (3)

with A,B,C > 0 (Lorentz invariance requires that the coefficient of φ̇2 and (∇φ)2 agree). This

choice of signs can be confirmed by calculating the Hamiltonian density H , and requiring that

it is bounded from below and stable against small perturbations. The correct dispersion relation

for a free particle requires A = B. The kinetic energy of a canonically normalised field has the

coefficient A = 1/2; this gives the correct size of vacuum fluctuations and is, e.g., assumed in the

standard form of propagators. The choice of C is arbitrary; other choices are compensated by a

corresponding change in the symmetry factor of Feynman diagrams. we set C = 1.
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b. The action S =
∫

dxL enters as exp(i/~S) the path integral and is therefore in natural units

dimensionless. Thus L has mass dimension 4. From the kinetic term, we see that the mass

dimension of the scalar field is 1. Thus the mass dimension of m is, not surprisingly, 1, and λ is

dimensionless.

c. In coordinate space, we have to connect four external points (say x1, . . . , x4) with the help of
two vertices (say at x and y) which combine each four lines. An example is

x1 x3

x2 x4

x

y

Two other diagrams are obtained connecting x1 with x2 or x4. In order to determine the symmetry
factor, we consider the expression for the four-point function corresponding to the graph shown
above,

1

2!

(

−i
λ

4!

)2 ∫

d4xd4y〈0|T{φ(x1)φ(x2)φ(x3)φ(x4)φ4(x)φ4(y)}|0〉 + (x↔ y) , (4)

and count the number of possible contractions: We can connect φ(x1) with each one of the four
φ(x), and then φ(x3) with one of the three remaining φ(x). This gives 4×3 possibilities. Another
4× 3 possibilities come by the same reasoning from the upper part of the graph. The remaining
pairs φ2(x) and φ2(y) can be combined in two possibilities. Finally, the factor 1/2! from the
Taylor expansion is canceled by the exchange graph. Thus the symmetry factor is

S =
1

2!
2!

(

4× 3

4!

)2

2 =
1

2
. (5)

Next we determine the Feynman amplitude in momentum space. We associate mathematical
expressions to the symbols of the following graphs

k2 k3

k1 k4 k1 k3

k2 k4

k1 k4

k2 k3

iAs iAt iAu

as follows: We replace internal propagators by i∆(k), external lines by 1 and vertices by −iλ.
Imposing four-momentum conservation at the two vertices leaves one free loop momentum, which
we call p. The momentum of the other propagator is then fixed to p−q, where q2 = s = (p1+p2)

2,
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q2 = t = (p1 − p3)
2, and q2 = u = (p1 − p4)

2 for the three graphs shown. Thus the Feynman

amplitude at order O(λ2) is iA(2) = iA(2)
s + iA(2)

t + iA(2)
u with

iA(2)
q =

1

2
λ2

∫

d4p

(2π)4
1

[p2 −m2 + iε]

1

[(p− q)2 −m2 + iε]
. (6)

d. We add the mass scale µ4−n and perform a Wick rotation,

µ4−ni∆F (0) =

∫

d4k2

(2π)4
1

k2 +m2
. (7)

Next we use the Schwinger’s proper-time representation,

∫ ∞

0
ds

∫

dnk

(2π)n
e−s(k2+m2) =

1

(4π)n/2

∫ ∞

0
ds s−n/2e−sm2

=
(m2)

n

2
−1

(4π)n/2
Γ
(

1− n

2

)

. (8)

where the substitution x = sm2 transformed the integral into one of the standard representations
of the gamma function. Now we expand

δm2 = λµ4−ni∆F (0) = λ
m2

(4π)2

(

4πµ2

m2

)2−n/2

Γ(1− n/2) . (9)

in a Laurent series, separating pole terms in ε and a finite remainder using

Γ(1− n/2) = Γ(−1 + ε/2) = −2

ε
− 1 + γ +O(ε) (10)

and
a−ε/2 = e−(ε/2) lna = 1− ε

2
ln a+O(ε2) . (11)

Thus the mass correction is given by

λµ4−ni∆F (0) ∝ m2

[

−2

ε
− 1 + γ +O(ε)

] [

1 +
ε

2
ln

(

4πµ2

m2

)

+O(ε2)

]

. (12)

= m2

[

−2

ε
− 1 + γ − ln

(

4πµ2

m2

)

+O(ε)

]

. (13)

(Note that the result is still in Euclidean space, going back results in m2 → −m2.)

e.) We still have to connect the quantity m2 + δm2 to the mass mphy observed at a given scale

Q2. Performing this process (renormalisation), the scale µ will be replaced by the physical scale

Q2. Alternatively, we can use that amplitudes or Green functions like G2 should be independent

of µ; this will convert parameters like the mass mphy into a scale dependent, running mass (if we

perform a calculation at finite order perturbation theory).

2. Spin one-half. Consider a theory of two Weyl fields, a left-chiral field φL and a
right-chiral field φR, with kinetic energy

L0 = iφ†
Rσ

µ∂µφR + iφ†
Lσ̄

µ∂µφL (14)
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a.) Add a Dirac mass term LD. (3 pts)
b.) Find the transformation property of L0 and LD under parity, Px = −x. (4 pts)
c.) Add a coupling Lint to the photon Aµ such that the coupling constant is dimensionless.
(4 pts)

a. The Dirac mass term expressed by Weyl fields is

L = −m(φ†LφR + φ†RφL) , (15)

as follows e.g. from

ψ̄ψ = ψ̄
(

P 2
L + P 2

R

)

ψ = ψ†
(

PRγ
0PL + PLγ

0PR

)

ψ = ψ̄RψL + ψ̄LψR . (16)

b. Px = −x implies P∇ = −∇. Using the definitions σµ = (1,σ) and σ̄µ = (1,−σ), we have

P (σµ∂µ) = σ̄µ∂µ and P (σ̄µ∂µ) = σµ∂µ. Combined with PφL = φR and PφR = φL, we see that

parity exchanges the first and the second term in L0. The same holds for the Dirac mass term.

Thus the combination of a left-chiral field and a right-chiral field Weyl field in Lo is invariant

under parity, as well as a Dirac mass term.

c. From the kinetic energy of the Weyl fields, we find that the fermion fields have mass dimension
3/2. From the Maxwell Lagrangian given below, we see that the photon field (as any bosonic

field) has dimension 1. Thus the two terms φ†Rσ
µφR and φ†Lσ̄

µφL transform as (pseudo-) vectors
and have dimension 3. The interaction

q(φ†Rσ
µφR + φ†Lσ̄

µφL)Aµ (17)

has thus a dimensionless coupling q; it transforms as a scalar is thus a suitable interaction term

Lint.

3. Spin one.

Consider a massless spin-one particle, e.g. the photon Aµ with Lagrange density

Leff = Lcl −
1

2ξ
(∂µAµ)

2 = −1

4
FµνF

µν − 1

2ξ
(∂µAµ)

2 . (18)

where Fµν = ∂µAν − ∂νAµ.
a.) List the symmetries of Lcl, and of Leff . (5 pts)
b.) Derive the corresponding propagator Dµν(k). [You don’t have to care how the pole is
handled.] (10 pts)
c.) Write down the generating functionals for disconnected and connected Green functions
of this theory. (4 pts)
d.) How does one obtain connected Green functions from the generating functional? (3
pts)
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e.) What are the two main changes in Lcl and in Leff−Lcl in case of a non-abelian theory?
[max. 50 words] (4 pts)

a. Continuous space-time symmetries: Leff is invariant under Lorentz transformations (3 boosts,

3 rotations) and translations (4). It contains no mass parameter and is thus conformally invariant

(1 scale and 4 special conformal transformations). Internal symmetries: Lcl is invariant under

local gauge transformations, Aµ(x) → A′
µ(x) = Aµ(x) − ∂µΛ(x). The local gauge invariance is

broken by the gauge fixing term, which however respects global gauge transformations Aµ(x) →
A′

µ(x) = Aµ(x)−∂µΛ. (Otherwise current conservation would be broken by Lgf .) And there are

still discrete symmetries. . .

b. Step 1: massaging the Maxwell part into standard form,

Lcl = −1

4
FµνF

µν = −1

2
(∂µA

ν∂µAν − ∂νAµ∂
µAν)

=
1

2
(Aν∂µ∂

µAν −Aµ∂
µ∂νAν) =

1

2
Aµ [η

µν
✷− ∂µ∂ν ]Aν =

1

2
AνD−1

µνA
µ ,

Performing a Fourier transformation and Combining with the gauge-fixing part gives

Pµν = −k2ηµν + (1− ξ−1)kµkν . (19)

Now we use the tensor method, either splitting the this expression into ηµν and kµkν , or into its
transverse and a longitudinal parts,

Pµν =− k2
(

Pµν
T +

kµkν

k2

)

+ (1− ξ−1)kµkν

=− k2Pµν
T − ξ−1k2Pµν

L . (20)

Since Pµν
T and Pµν

L project on orthogonal sub-spaces, we obtain the inverse P−1
µν simply by in-

verting their pre-factors. Thus the photon propagator in Rξ gauge is given by

iDµν
F (k2) =

−iPµν
T

k2 + iε
+

−iξPµν
L

k2 + iε
=

−i

k2 + iε

[

ηµν − (1− ξ)
kµkν
k2 + iε

]

. (21)

c.) We add to Leff sources Jµ coupled linearly to the fields,

Leff = Lcl + Lgf + JµAµ . (22)

The generating functional Z for disconnected Green functions is the path integral over fields over
exp(i

∫

d4xLeff}),
Z[Jµ] =

∫

DA exp{i
∫

d4xLeff} = eiW [Jµ]. (23)

d.) W [Jµ] generates connected Green functions via

1

in
iδnW

δJµ(x1) · · · δJν(xn)
)

∣

∣

∣

∣

J=0

= Gµ···ν(x1, . . . , xn) . (24)
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e. Lcl contains now tri- and qudrilinear terms in the fields (with coefficient determined by the

structure constants of the gauge group), i.e. the thoery is non-linear.

Leff − Lcl has to be modified either choosing a non-covariant gauge or adding a Fadeev-Popov

ghost term.

Some formulas

The Pauli matrices are

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (25)

They satisfy σiσj = δij + iεijkσk. Combining the Pauli matrices with the unit matrix, we
can construct the two 4-vectors σµ ≡ (1,σ) and σ̄µ ≡ (1,−σ).

The Gamma matrices satisfy the Clifford algebra

{γµ, γν} = 2ηµν (26)

and are in the Weyl or chiral representation given by

γ0 = 1⊗ τ1 =

(

0 1
1 0

)

, (27)

γi = σi ⊗ iτ3 =

(

0 σi

−σi 0

)

, (28)

γ5 = 1⊗ τ3 =

(

−1 0
0 1

)

. (29)

ψL =
1

2
(1− γ5)ψ ≡ PLψ and ψR =

1

2
(1 + γ5)ψ ≡ PRψ . (30)

σµν =
i

2
[γµ, γν ] (31)

Γ = γ0Γ†γ0 (32)

1

ab
=

∫ 1

0

dz

[az + b(1 − z)]2
. (33)

page 6 of 3 pages



FY3464 Quantum Field Theory 1 Final exam 04.06.2015

1

k2 +m2
=

∫ ∞

0

ds e−s(k2+m2) (34)

∫ ∞

−∞

dx exp(−x2/2) =
√
2π (35)

f−ε/2 = 1− ε

2
ln f +O(ε2) . (36)

Γ(z) =

∫ ∞

0

dt e−ttz−1 (37)

Γ(n+ 1) = n! (38)

Γ(−n + ε) =
(−1)n

n!

[

1

ε
+ ψ1(n + 1) +O(ε)

]

, (39)

ψ1(n+ 1) = 1 +
1

2
+ . . .+

1

n
− γ , (40)
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