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NTNU Institutt for fysikk

Contact during the exam:
Faglærer: Professor Arne Brataas
Kontakt under eksamen: Dr. Anh Kiet Nguyen
Telephone: 73593647

Exam in TFY4205 Quantum Mechanics
August, 2006
9:00–13:00

Allowed help: Alternativ C
Approved Calculator.
K. Rottman: Matematische Formelsammlung
Barnett and Cronin: Mathematical formulae

At the end of the problem set some relations are given that might be helpful.

This problem set consists of 6 pages.

Problem 1. Momentum Representation
A particle of mass m is subjected to a force F(r) = −∇V (r) such that the wave function φ(p)
satisfies the momentum-space Schrödinger equation(

p2

2m
− a∇2

p

)
φ(p, t) = i~

∂

∂t
φ(p, t) , (1)

where a is a real constant and

∇2
p =

∂2

∂p2
x

+
∂2

∂p2
y

+
∂2

∂p2
z

. (2)

Find the force F(r).
Solution
The coordinate and momentum representations of a wave function are related by

ψ(r, t) =
(

1
2π~

)3/2 ∫
dpφ(p, t) exp ip · r/~ , (3)

φ(p, t) =
(

1
2π~

)3/2 ∫
drψ(r, t) exp−ip · r/~ . (4)

Thus

p2φ(p, t) → −~2∇2ψ(r, t) , (5)
∇2

pφ(p, t) → −r2ψ(r, t) , (6)

and the Schrödinger equation becomes in coordinate space(
− ~2

2m
+ ar2

)
ψ(r, t) = i~

∂

∂t
ψ(r, t) . (7)
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Hence the potential is
V (r) = ar2 , (8)

and the force is
F(r) = −∇V (r) = −r

r

d

dr
V (r) = −2ar . (9)

Problem 2. Harmonic Oscillator
The Hamiltonian for a harmonic oscillator can be written in dimensionless units (m = ~ =
ω = 1) as

Ĥ = â†â+
1
2
, (10)

where

â =
1√
2

(x̂+ ip̂) , â† =
1√
2

(x̂− ip̂) , (11)

and x̂ is the position operator and p̂ is the momentum operator. One unnormalized energy
eigenfunction is

ψa =
(
2x3 − 3x

)
exp−x2/2 . (12)

a) Find two other (unnormalized) eigenfunctions which are closest in energy to ψa.

Hint: In the Fock representation of harmonic oscillation, â and â† are the annihilation
and creation operators such that

â|n〉 =
√
n|n− 1〉 , (13)

â†|n〉 =
√
n+ 1|n+ 1〉 , (14)

where

Ĥ|n〉 =
(
n+

1
2

)
|n〉 . (15)

Solution

Using the definitions for the operators â and â†, we find

ââ†|n〉 = (n+ 1) |n〉 . (16)

As

ââ†ψa =
1
2

(
x+

d

dx

) (
x− d

dx

) (
2x3 − 3x

)
exp−x2/2 , (17)

=
1
2

(
x+

d

dx

) (
3x4 − 12x2 + 3

)
exp−x2/2 , (18)

= 4
(
2x3 − 3x

)
exp−x2/2 , (19)

= (3 + 1)ψa , (20)

we have n = 3. Hence the eigenfunctions closest in energy to ψa have n = 2 and n = 4,
the unnormalized wave functions being

ψ2 =
1√
3
âψa , (21)

=
1√
6

(
x+

d

dx

) (
2x3 − 3x

)
exp−x2/2 , (22)

∼
(
2x2 − 1

)
exp−x2/2 , (23)
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and

ψ4 =
1
2
â†ψa , (24)

=
1

2
√

2

(
x− d

dx

) (
2x3 − 3x

)
exp−x2/2 , (25)

∼
(
4x4 − 12x2 + 3

)
exp−x2/2 , (26)

where the unimportant constant prefactors have been omitted.

b) We now reintroduce the dimensions and write the Hamiltonian using the momentum
and position operators:

Ĥ =
p̂2

2m
+

1
2
mω2x̂2 . (27)

Find the time dependence of the expectation values of the ”initial position” and ”initial
momentum” operators

x̂0 = x̂ cosωt− p̂

mω
sinωt , (28)

p̂0 = p̂ cosωt+mωx̂ sinωt . (29)

Solution

Making use of the relation (in the Heisenberg representation)

df̂

dt
=

1
i~

[
f̂ , Ĥ

]
+
∂f̂

∂t
, (30)

and
1
i~

[
x̂, Ĥ

]
=

1
2m

1
i~

[
x̂, p̂2

]
=

p̂

m
(31)

1
i~

[
p̂, Ĥ

]
=

1
2
mω2 1

i~
[
p̂, x̂2

]
= −mω2x̂ (32)

(33)

so that
dx̂

dt
=

p̂

m
, (34)

dp̂

dt
= −mω2x̂ . (35)

That means that for the expectation values, we have the two coupled differential equa-
tions

dx

dt
=

p

m
, (36)

dp

dt
= −mω2p . (37)

with the solutions

x(t) = x(t = 0) cosωt− p(t = 0)
m

sinωt , (38)

p(t) = p(t = 0) cosωt+mωx(t = 0) sinωt (39)
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We then have

dx0(t)
dt

=
p(t)
m

cosωt− ωx(t) sinωt = 0 , (40)

dp̂0

dt
=

p̂

m
cosωt+ ωx̂ sinωt = 0 . (41)

c) Compute the commutator [p̂0, x̂0]. What is the significance for measurements theory?

Solution

Using the expression for p̂0 and x̂0, we find

[p̂0, x̂0] =
[
x̂ cosωt− p̂

mω
sinωt, p̂ cosωt+mωx̂ sinωt

]
, (42)

= cos2 ωt [x̂, p̂]− sin2 ωt

[
p̂

mω
,mωx̂

]
, (43)

= [p̂, x̂] (44)

=
~
i
. (45)

Thus, we have the same uncertainty as between the the operators p̂ and x̂, so that

∆p0∆x0 ≥
~
2
. (46)

Problem 3. Particle in a Periodic Potential
A particle of mass m moves in one dimension in a periodic potential of of infinite exten. The
potential is zero at most places, but in narrow regions of width b separated by spaces of length
a (b � a) the potential is V0, where V0 is a large positive constant. One may think of the
potential as a sum of Dirac delta functions:

V (x) =
∞∑

n=−∞
V0bδ(x− na) . (47)

a) Show that the appropriate boundary conditions to apply to the wave function are(
dψ

dx

)
x=na+ε

−
(
dψ

dx

)
x=na−ε

= 2Ωψ(na) , (48)

where ε→ 0 and Ω = mV0b/~2, n is an integer, and

ψ(na+ ε)− ψ(na− ε) = 0 . (49)

Solution

The Schrödinger equation is[
− ~2

2m
d2

dx2
+

∞∑
n=−∞

V0bδ(x− na)

]
ψ(x) = Eψ(x) . (50)
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Integrating it from x = a− ε to x = a+ ε and letting ε→ 0, we get(
dψ

dx

)
x=na+ε

−
(
dψ

dx

)
x=na−ε

= 2Ωψ(na) . (51)

The wave function must be continous since otherwise the kinetic energy would become
infinitely large. Consequently,

ψ(na+ ε)− ψ(na− ε) = 0 . (52)

b) Let the lowest energy of a wave that can propagate through this potential be E0 = ~2k2
0

(this defines k0). Write down a transcendental equation (not a differential equation)
that can be solved to give k0 and thus E0. (It is not necessary to solve the transcendental
equation).

Solution

For x 6= na, there are two fundamental solutions to the Schrödinger equation:

u1(x) = exp ikx , u2(x) = exp ikx (53)

the corresponding energy being

E =
~2k2

2m
. (54)

Let
ψ(x) = A exp ikx+B exp−ikx , 0 ≤ x ≤ a . (55)

According to Bloch’s Theorem, in the region a ≤ x ≤ 2a

ψ(x) = exp iKa [A exp ik(x− a) +B exp−ik(x− a)] , (56)

where K is the Bloch wave number. The boundary condition give

eiKa (A+B) = Aeika +Be−ika , (57)

ikeiKa + (A−B) = ik
(
Aeika −Be−ika

)
+ 2Ω

(
Aeika +Be−ika

)
. (58)

For non-zero solutions of A and B we require∣∣∣∣ eiKa − eika eiKa − e−ika

ikeiKa − (ik + 2Ω)eika −ikeiKa + (ik − 2Ω)e−ika

∣∣∣∣ = 0 (59)

or
cos ka+

Ω
k

sin ka = cosKa (60)

which determines the Bloch wave number K. Consequently, the allowed values of k are
limited to the range given by ∣∣∣∣cos ka+

Ω
k

sin ka
∣∣∣∣ ≤ 1 , (61)

or (
cos ka+

Ω
k

sin ka
)2

≤ 1 . (62)

k0 is the minimum of k that satisfy this inequality.
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c) Write down the wave function at energy E0 valid in the region 0 ≤ x ≤ a. (For
uniformity, let us choose normalization and phase such that ψ(x = 0) = 1). What
happens to the wave function between x = a and x = a+ b?

Solution

For E = E0,
ψ(x) = Aeik0x +Be−ik0x , 0 ≤ x ≤ a , (63)

where k0 =
√

2mE0/~2. A normalization choice, ψ(x = 0) = 1 gives

ψ(x) = 2iA sin k0x+ e−ik0x , 0 ≤ x ≤ a , (64)

The boundary conditions at x = a give

eiKa = 2iA sin k0a+ e−ik0a , (65)

or

2iA =

(
eiKa − e−ik0a

)
sin k0a

. (66)

So
ψ(x) =

(
eiKa − e−ik0a

) sin k0x

sin k0a
+ e−ik0x , 0 ≤ x ≤ a . (67)

For x in the interval a to a+ b, the wave function has the form exp±ik1x, where

k1 =

√
2m(V0 − E)

~2
. (68)

d) Show that there are ranges of values of E, greater than E0, for which there is no
eigenfunction. Find (exactly) the energy at which the first such gap begins.

Solution

For ka = nπ + δ, where δ is a small positive number, we have∣∣∣∣cos ka+
Ω
k

sin ka
∣∣∣∣ =

∣∣∣∣cosnπ + δ +
Ω
k

sinnπ + δ

∣∣∣∣ (69)

≈
∣∣∣∣1− δ2

2
+

Ω
k
δ

∣∣∣∣ . (70)

When δ is quite small, the left side ≈ 1 + Ωδ/k ≥ 1. Therefore, in a certain region
of k > nπ/a, there is no eigenfunction. On the other hand, ka = nπ corresponds to
eigenvalues. So the energy at which the first energy gap begins satisfies the relation
ka = π,

E =
π2~2

2ma2
. (71)


