### **NTNU**



Contact during the exam: Professor Ingve Simonsen Telephone: 9 34 17 or 470 76 416

### Exam in TFY4240 Electromagnetic Theory

Wednesday Dec 10, 2008 09:00–13:00

Allowed help: Alternativ C

Authorized calculator and mathematical formula book

This problem set consists of 8=1one page=0.

#### Problem 1.



An infinitely long wire carries a (time-independent) current I. The wire is bent so as to have a semi-circular detour, of radius R, around the origin O (see figure).

- a) Derive an expression for the magnetic field (vector),  $\mathbf{H}$ , at the origin O of the coordinate system.
- b) Determine the numeric value of this magnetic field given the current I = 1A and radius R = 1cm.

#### Problem 2.

In this problem, we will consider the so-called *attenuation constant* for a plane wave propagating in a good conductor. We aim at, step-by-step, to derive an expression for this constant. The medium under study is an ohmic conductor of permittivity  $\varepsilon$ , permeability  $\mu$  and conductivity  $\sigma$ . For simplicity these constants are assumed to be *independent* of frequency.

a) From the Maxwell's equations and Ohm's law, show that the relevant wave equation reads

$$\nabla^2 \mathbf{E} - \mu \varepsilon \partial_t^2 \mathbf{E} - \mu \sigma \partial_t \mathbf{E} = 0, \tag{1}$$

where  $\mathbf{E} \equiv \mathbf{E}(\mathbf{r}, t)$  and  $\partial_t = \frac{\partial}{\partial t}$ .

EXAM IN TFY4240 ELECTROMAGNETIC THEORY, DEC. 10,2008

**b)** For a wave of angular frequency  $\omega$ ,  $\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0(\mathbf{r})e^{-i\omega t}$ , Eq. (1) can be written in the from

$$\nabla^2 \mathbf{E}_0 + \mu \epsilon(\omega) \omega^2 \mathbf{E}_0 = 0. \tag{2}$$

Show this, and identify the function  $\epsilon(\omega)$  (different from  $\varepsilon$ ).

A plane wave is incident on the conductor along the inward normal, whose direction is taken to be the z-direction. Then in the conductor the electromagnetic wave can be represented by

$$\mathbf{E} = \mathbf{E}_0 e^{ikz - i\omega t},\tag{3}$$

where k is the wave number.

- c) Find an expression for the wave number k in terms of  $\omega$  and the medium parameters  $(\varepsilon, \mu \text{ and } \sigma)$ .
- d) We write  $k = k_1 + ik_2$ , where  $k_1$  and  $k_2$  both are real functions. For a good conductor, i.e. for  $\sigma/(\varepsilon\omega) \gg 1$ , show that  $k_1 = k_2$  and determine this common function (again) in terms of  $\omega$  and the material parameters.
- e) Argue why it is reasonable to name the constant  $\delta = 1/k_2$  the attenuation constant. Write down the expression for this constant  $(\delta)$ .

#### Problem 3.



A static electric dipole is located in vacuum at position  $\mathbf{r}_0 = (0, 0, z_0)$  (see figure). Its dipole moment can be written  $\mathbf{p} = p(\sin \theta, 0, \cos \theta)$  where  $\theta$  is the angle between  $\mathbf{p}$  and the positive z-axis. Initially vacuum is filling the whole space (also the region  $z \leq 0$ ).

a) Show that the scalar potential for an individual dipole (without the conducting half-space present) can be written as

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\hat{\mathbf{R}} \cdot \mathbf{p}}{R^2}.$$
 (4)

What is the meaning of **R** in this equation? In your proof, you may for simplicity set  $z_0 = 0$  and  $\theta = 0$ . Below, however, this assumption will *not* be made.

Now a perfectly conducting, grounded, half-space is placed at  $z \leq 0$ .

- b) Give the boundary conditions that the scalar potential,  $V(\mathbf{r})$ , satisfies at the interface of the metallic half-space (z=0). Explain (in words) the essence of the method of images.
- c) Use the results from point b) to determine the location and orientation of the image dipole, and make a sketch of the resulting configuration. Moreover, show that the scalar potential for  $z \geq 0$  can be written as

$$V(\mathbf{r}) = \frac{p}{4\pi\varepsilon_0} \left( \frac{x\sin\theta + (z - z_0)\cos\theta}{\left[x^2 + y^2 + (z - z_0)^2\right]^{3/2}} + \frac{-x\sin\theta + (z + z_0)\cos\theta}{\left[x^2 + y^2 + (z + z_0)^2\right]^{3/2}} \right).$$
 (5)

d) Determine the induced (surface) charge density,  $\sigma(x, y)$  on the surface of the metal. Express your answer in terms of the spatial coordinates x and y, the dipole height  $z_0$ , the dipole orientation  $\theta$ , and the magnitude of the dipole moment  $|\mathbf{p}| = p$ .

#### Problem 4.



Consider a particle of charge  $q \neq 0$  that is moving with a constant angular frequency  $\omega$  along a circular path of radius  $r_0$  in the xy-plane (see figure). For instance, this can be achieved by applying a static magnetic field **H**. It is assumed that the particle velocity is non-relativistic  $(v_p \ll c)$ .

An observer point, O, is defined by the spherical coordinates  $(r, \theta, \phi)$  relative to a coordinates system with origin in the centered of the circle (see figure).

a) Write down an expression for the *time-dependent* particle position,  $\mathbf{r}_p(t)$ , and use this to calculate the particle velocity,  $\mathbf{v}_p(t)$ , and acceleration,  $\mathbf{a}_p(t)$ . What is the direction of the applied (static) magnetic field,  $\mathbf{H}$ , relative  $\mathbf{v}_p(t)$ , for the particle to make circular motion?

We will now study the radiation from this particle. The time-dependent radiated power per solid angle is given by

$$\frac{dP}{d\Omega} = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{4\pi c^3} \left(\hat{\mathbf{R}} \times \mathbf{a}_p\right)^2. \tag{6}$$

- **b)** Explain what the time-dependent factor  $\hat{\mathbf{R}}(t)$  in Eq. (6) means. When calculating  $dP/d\Omega$ , what time should be used for this quantity and  $\mathbf{a}_p(t)$ ?
- c) Under the assumption  $r_0 \ll r$  derive an expression for the *time-averaged* radiated power per solid angle  $\langle dP/d\Omega \rangle$  for the particle. Why is this expression independent of the angle  $\phi$ ? Explain why the assumption  $r_0 \ll r$  simplifies significantly the calculation.
- **d)** What is the total radiated power, P, from the system (independent of radiation direction)? Compare your result with Larmor's formula (cf. formula sheet).
- e) You have just showed (hopefully) that the particle is radiating, i.e. that  $P \neq 0$ . However, still the particle performs circular motion of constant angular velocity, and therefore has time independent total energy. Explain how this is possible. Where is the radiated energy coming from?

## **FUNDAMENTAL CONSTANTS**

$$\epsilon_0 = 8.85 \times 10^{-12} \,\text{C}^2/\text{Nm}^2$$
 (permittivity of free space)

$$\mu_0 = 4\pi \times 10^{-7} \,\text{N/A}^2$$
 (permeability of free space)

$$c = 3.00 \times 10^8 \,\mathrm{m/s}$$
 (speed of light)

$$e = 1.60 \times 10^{-19} \,\mathrm{C}$$
 (charge of the electron)

$$m = 9.11 \times 10^{-31} \text{ kg}$$
 (mass of the electron)

## SPHERICAL AND CYLINDRICAL COORDINATES

### **Spherical**

$$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases} \begin{cases} \hat{\mathbf{x}} = \sin \theta \cos \phi \, \hat{\mathbf{r}} + \cos \theta \cos \phi \, \hat{\boldsymbol{\theta}} - \sin \phi \, \hat{\boldsymbol{\phi}} \\ \hat{\mathbf{y}} = \sin \theta \sin \phi \, \hat{\mathbf{r}} + \cos \theta \sin \phi \, \hat{\boldsymbol{\theta}} + \cos \phi \, \hat{\boldsymbol{\phi}} \end{cases}$$

$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \tan^{-1}(\sqrt{x^2 + y^2}/z) \\ \phi = \tan^{-1}(y/x) \end{cases} \begin{cases} \hat{\mathbf{r}} = \sin \theta \cos \phi \, \hat{\mathbf{x}} + \sin \theta \sin \phi \, \hat{\mathbf{y}} + \cos \theta \, \hat{\mathbf{z}} \\ \hat{\boldsymbol{\theta}} = \cos \theta \cos \phi \, \hat{\mathbf{x}} + \cos \theta \sin \phi \, \hat{\mathbf{y}} - \sin \theta \, \hat{\mathbf{z}} \\ \hat{\boldsymbol{\phi}} = -\sin \phi \, \hat{\mathbf{x}} + \cos \phi \, \hat{\mathbf{y}} \end{cases}$$

# Cylindrical

$$\begin{cases} x = s \cos \phi \\ y = s \sin \phi \\ z = z \end{cases} \qquad \begin{cases} \hat{\mathbf{x}} = \cos \phi \, \hat{\mathbf{s}} - \sin \phi \, \hat{\boldsymbol{\phi}} \\ \hat{\mathbf{y}} = \sin \phi \, \hat{\mathbf{s}} + \cos \phi \, \hat{\boldsymbol{\phi}} \\ \hat{\mathbf{z}} = \hat{\mathbf{z}} \end{cases}$$

$$\begin{cases} s = \sqrt{x^2 + y^2} \\ \phi = \tan^{-1}(y/x) \\ z = z \end{cases} \begin{cases} \hat{\mathbf{s}} = \cos\phi \,\hat{\mathbf{x}} + \sin\phi \,\hat{\mathbf{y}} \\ \hat{\boldsymbol{\phi}} = -\sin\phi \,\hat{\mathbf{x}} + \cos\phi \,\hat{\mathbf{y}} \\ \hat{\mathbf{z}} = \hat{\mathbf{z}} \end{cases}$$

# BASIC EQUATIONS OF ELECTRODYNAMICS

## **Maxwell's Equations**

In general:

$$\begin{cases}
\nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho \\
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B} = 0 \\
\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}
\end{cases}$$

In matter:

$$\begin{cases} \mathbf{\nabla} \cdot \mathbf{D} = \rho_f \\ \mathbf{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \mathbf{\nabla} \cdot \mathbf{B} = 0 \\ \mathbf{\nabla} \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t} \end{cases}$$

## **Auxiliary Fields**

Definitions:

$$\begin{cases} \mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} \\ \mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M} \end{cases}$$

Linear media:

$$\begin{cases}
\mathbf{P} = \epsilon_0 \chi_e \mathbf{E}, & \mathbf{D} = \epsilon \mathbf{E} \\
\mathbf{M} = \chi_m \mathbf{H}, & \mathbf{H} = \frac{1}{\mu} \mathbf{B}
\end{cases}$$

**Potentials** 

$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B} = \nabla \times \mathbf{A}$$

Lorentz force law

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

**Energy, Momentum, and Power** 

Energy: 
$$U = \frac{1}{2} \int \left( \epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) d\tau$$

*Momentum*: 
$$\mathbf{P} = \epsilon_0 \int (\mathbf{E} \times \mathbf{B}) d\tau$$

Poynting vector: 
$$\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B})$$

Larmor formula: 
$$P = \frac{\mu_0}{6\pi c}q^2a^2$$

# **Triple Products**

(1) 
$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$

(2) 
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

### **Product Rules**

(3) 
$$\nabla (fg) = f(\nabla g) + g(\nabla f)$$

(4) 
$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A}$$

(5) 
$$\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$$

(6) 
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$

(7) 
$$\nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) - \mathbf{A} \times (\nabla f)$$

(8) 
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A})$$

## **Second Derivatives**

(9) 
$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$

(10) 
$$\nabla \times (\nabla f) = 0$$

(11) 
$$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

# **FUNDAMENTAL THEOREMS**

Gradient Theorem :  $\int_{\mathbf{a}}^{\mathbf{b}} (\nabla f) \cdot d\mathbf{l} = f(\mathbf{b}) - f(\mathbf{a})$ 

Divergence Theorem :  $\int (\nabla \cdot \mathbf{A}) d\tau = \oint \mathbf{A} \cdot d\mathbf{a}$ 

Curl Theorem :  $\int (\nabla \times \mathbf{A}) \cdot d\mathbf{a} = \oint \mathbf{A} \cdot d\mathbf{l}$ 

Cartesian.  $d\mathbf{l} = dx \,\hat{\mathbf{x}} + dy \,\hat{\mathbf{y}} + dz \,\hat{\mathbf{z}}; \quad d\tau = dx \, dy \, dz$ 

Gradient: 
$$\nabla t = \frac{\partial t}{\partial x} \hat{\mathbf{x}} + \frac{\partial t}{\partial y} \hat{\mathbf{y}} + \frac{\partial t}{\partial z} \hat{\mathbf{z}}$$

Divergence: 
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

Curl: 
$$\nabla \times \mathbf{v} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) \hat{\mathbf{x}} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) \hat{\mathbf{y}} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) \hat{\mathbf{z}}$$

Laplacian: 
$$\nabla^2 t = \frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2}$$

**Spherical.**  $d\mathbf{l} = dr \,\hat{\mathbf{r}} + r \, d\theta \,\hat{\boldsymbol{\theta}} + r \sin\theta \, d\phi \,\hat{\boldsymbol{\phi}}; \quad d\tau = r^2 \sin\theta \, dr \, d\theta \, d\phi$ 

Gradient: 
$$\nabla t = \frac{\partial t}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial t}{\partial \theta} \hat{\boldsymbol{\theta}} + \frac{1}{r \sin \theta} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\phi}}$$

Divergence: 
$$\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$$

Curl: 
$$\nabla \times \mathbf{v} = \frac{1}{r \sin \theta} \left[ \frac{\partial}{\partial \theta} (\sin \theta \ v_{\phi}) - \frac{\partial v_{\theta}}{\partial \phi} \right] \hat{\mathbf{r}}$$

$$+\frac{1}{r}\left[\frac{1}{\sin\theta}\frac{\partial v_r}{\partial\phi}-\frac{\partial}{\partial r}(rv_\phi)\right]\hat{\boldsymbol{\theta}}+\frac{1}{r}\left[\frac{\partial}{\partial r}(rv_\theta)-\frac{\partial v_r}{\partial\theta}\right]\hat{\boldsymbol{\phi}}$$

Laplacian: 
$$\nabla^2 t = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial t}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial t}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 t}{\partial \phi^2}$$

Cylindrical.  $d\mathbf{l} = ds \,\hat{\mathbf{s}} + s \,d\phi \,\hat{\boldsymbol{\phi}} + dz \,\hat{\mathbf{z}}; \quad d\tau = s \,ds \,d\phi \,dz$ 

Gradient: 
$$\nabla t = \frac{\partial t}{\partial s} \hat{\mathbf{s}} + \frac{1}{s} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\phi}} + \frac{\partial t}{\partial z} \hat{\mathbf{z}}$$

Divergence: 
$$\nabla \cdot \mathbf{v} = \frac{1}{s} \frac{\partial}{\partial s} (s v_s) + \frac{1}{s} \frac{\partial v_{\phi}}{\partial \phi} + \frac{\partial v_z}{\partial z}$$

Curl: 
$$\nabla \times \mathbf{v} = \left[ \frac{1}{s} \frac{\partial v_z}{\partial \phi} - \frac{\partial v_\phi}{\partial z} \right] \hat{\mathbf{s}} + \left[ \frac{\partial v_s}{\partial z} - \frac{\partial v_z}{\partial s} \right] \hat{\boldsymbol{\phi}} + \frac{1}{s} \left[ \frac{\partial}{\partial s} (s v_\phi) - \frac{\partial v_s}{\partial \phi} \right] \hat{\mathbf{z}}$$

Laplacian: 
$$\nabla^2 t = \frac{1}{s} \frac{\partial}{\partial s} \left( s \frac{\partial t}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 t}{\partial \phi^2} + \frac{\partial^2 t}{\partial z^2}$$