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NTNU Institutt for fysikk

Contact during the exam:
Professor Ingve Simonsen
Telephone: 93417 or 47076416

Exam in TFY4240 Electromagnetic Theory
Wednesday Dec 10, 2008
09:00-13:00

Allowed help: Alternativ C
Authorized calculator and mathematical formula book

This problem set consists of 8=1one page=0.

Problem 1.

An infinitely long wire carries a (time-independent) current I. The wire is bent so as to have
a semi-circular detour, of radius R, around the origin O (see figure).

a) Derive an expression for the magnetic field (vector), H, at the origin O of the coordinate
System.

b) Determine the numeric value of this magnetic field given the current = 1A and radius
R =1lcm.

Problem 2.
In this problem, we will consider the so-called attenuation constant for a plane wave propagat-
ing in a good conductor. We aim at, step-by-step, to derive an expression for this constant.

The medium under study is an ohmic conductor of permittivity e, permeability p and con-
ductivity o. For simplicity these constants are assumed to be independent of frequency.

a) From the Maxwell’s equations and Ohm’s law, show that the relevant wave equation
reads

V2E — jed’E — podE = 0, (1)

where E = E(r,t) and 9; = %.



ExaM 1IN TFY4240 ELECTROMAGNETIC THEORY, DEC. 10,2008 Page 2 of 8
b) For a wave of angular frequency w, E(r,t) = Eg(r)e”™! Eq. (1) can be written in the
from

VZE( + pe(w)w’Ey = 0. (2)

Show this, and identify the function e(w) (different from e).
A plane wave is incident on the conductor along the inward normal, whose direction is taken
to be the z-direction. Then in the conductor the electromagnetic wave can be represented by
E = EO eikz—’iwt’ (3)

where k is the wave number.
c) Find an expression for the wave number k in terms of w and the medium parameters
(e, p and o).

d) We write k = k1 + iko, where k1 and ks both are real functions. For a good conductor,
i.e. for o/(ew) > 1, show that k1 = k2 and determine this common function (again) in
terms of w and the material parameters.

e) Argue why it is reasonable to name the constant 6 = 1/ko the attenuation constant.
Write down the expression for this constant ().

Problem 3.

A static electric dipole is located in vacuum at position ro = (0,0, zg) (see figure). Its dipole
moment can be written p = p(sin6, 0, cos ) where 6 is the angle between p and the positive
z-axis. Initially vacuum is filling the whole space (also the region z < 0).
a) Show that the scalar potential for an individual dipole (without the conducting half-
space present) can be written as
1 R- o)

vir) = dreg R2 )

What is the meaning of R in this equation? In your proof, you may for simplicity set
zo = 0 and 6 = 0. Below, however, this assumption will not be made.
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Now a perfectly conducting, grounded, half-space is placed at z < 0.

b)

d)

Give the boundary conditions that the scalar potential, V(r), satisfies at the interface
of the metallic half-space (z = 0). Explain (in words) the essence of the method of
images.

Use the results from point b) to determine the location and orientation of the image
dipole, and make a sketch of the resulting configuration. Moreover, show that the scalar
potential for z > 0 can be written as

V(r)

P zsinf + (z — zp) cos®  —xsinf + (z + zp) cos b (5)
Ameo \[a2 + 92 + (2 = 20" 2?92+ (242007 )

Determine the induced (surface) charge density, o(x,y) on the surface of the metal.
Express your answer in terms of the spatial coordinates x and y, the dipole height z,
the dipole orientation 6, and the magnitude of the dipole moment |p| = p.

Problem 4.

7 O
0 r
|
j y

¢

Consider a particle of charge ¢ # 0 that is moving with a constant angular frequency w along
a circular path of radius r¢ in the zy-plane (see figure). For instance, this can be achieved by
applying a static magnetic field H. It is assumed that the particle velocity is non-relativistic
(vp < ).

An observer point, O, is defined by the spherical coordinates (r, 6, ¢) relative to a coordinates
system with origin in the centered of the circle (see figure).

a) Write down an expression for the time-dependent particle position, r,(t), and use this

to calculate the particle velocity, v,(t), and acceleration, a,(t). What is the direction
of the applied (static) magnetic field, H, relative v, (t), for the particle to make circular
motion?

We will now study the radiation from this particle. The time-dependent radiated power per
solid angle is given by

dP 1 ¢ /= 2
dQ ~ 4meg dncd (R % ap> ' (6)
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b)

c)

d)

Explain what the time-dependent factor R(¢) in Eq. (6) means. When calculating
dP/dQ), what time should be used for this quantity and a,(t)?

Under the assumption g < r derive an expression for the time-averaged radiated power
per solid angle (dP/dY) for the particle. Why is this expression independent of the
angle ¢? Explain why the assumption rg < r simplifies significantly the calculation.

What is the total radiated power, P, from the system (independent of radiation direc-
tion)? Compare your result with Larmor’s formula (cf. formula sheet).

You have just showed (hopefully) that the particle is radiating, i.e. that P # 0. How-
ever, still the particle performs circular motion of constant angular velocity, and there-
fore has time independent total energy. Explain how this is possible. Where is the
radiated energy coming from?



FUNDAMENTAL CONSTANTS

e = 8.85x10712C2/Nm? (permittivity of free space)
o = 4m x 107N /A2 (permeability of free space)
c = 3.00x108m/s (speed of light)

e = 160x1071°C (charge of the electron)

m = 9.11x10 3 kg (mass of the electron)

SPHERICAL AND CYLINDRICAL COORDINATES

Spherical
[ x = rsinfcos¢ % = sinfcos¢rt +cosbcosg —sin ¢
{ y = rsinfsing 1y = sinesin¢f'+cos€sin¢é—|—cos¢$
| 2 = rcost | 2 cosOF —sin6 @
[ r = Jx24+y2+22 [ F = sinfcos¢X+sinfsingy+ cosfZ
160 = tan 1(/x2+y2/2) 6 = cosOcosgk+cosfsing§y — sin 62
¢ = tan~!(y/x) | ¢ = —singR+cosgy
Cylindrical
[ x = scos¢ % = cosp§—singe
'y = ssing 1§ = singd+cospe
Z = z Z = 1
s = JxZ4y? [ § = cos@ X + sin ¢ ¥
{ ¢ = tanl(y/x) 1 ¢ = —singk+cosgy
|z = 2 i = 1




BASIC EQUATIONS OF ELECTRODYNAMICS

Maxwell’s Equations

In general - In matter :
1 .
V.E=— V.-D=pf
€0
B
V xE = _98 VXE= ot
< 1 4 '
V.B=0 V.-B=0
oD
oE VxH-= -
L VXB=M0J+M0€0¥ X Jf+8t
Aucxiliary Fields
Definitions - Linear media :
D=¢E+P P=¢yx.E, D=¢cE
1 1
H=—B-M M=y,H H=-B
Ko (22
Potentials
0A
E=-VV - —, B=VxA
ot
Lorentz force law
F=gE+vxB)
Energy, Momentum, and Power
1 2, 1 »
Energy : U=~ e+ —B° ) dr
2 Ho

Momentum : P=¢) [(ExB)dr

1
Poynting vector : S = —(E x B)
Mo

Larmor formula: P = ﬂqza2
bre



VECTOR IDENTITIES

Triple Products
(1) A-BxC)=B-(CxA)=C-(AxB)
2) AxBxC)=BA -C)—-C(A-B)
Product Rules
(3 V(fe)=f(Vg)+g(Vf)
(4) VAA-B)=Ax(VxB)+Bx (VxA)+A-V)B+B-V)A
) V-(fA=f(V-A)+A-(V))
(6) V-AxB)=B-(VxA)—A (VxB)
(7)) Vx(fA)=f(VxA)-Ax(Vf)
(8) VX(AxB)=B-V)A—(A-V)B+A(V-B)—B(V-A)

Second Derivatives

9 V- (VxA)=0
(10) Vx(Vf)=0

(11) Vx (VXA =V(V.A) —-V2A

FUNDAMENTAL THEOREMS

Gradient Theorem :  [P(Vf)-dl = f(b) — f(a)
Divergence Theorem : [(V-A)dr = A -da

Curl Theorem : J(VxA)-da=¢A- dl




VECTOR DERIVATIVES

Cartesian. dl=dxx+dyy+dzi; drv=dxdyd:
Gradient Vi 32‘A+3t +azA
radient : hid
0x ay y 07
0 0
Divergence: V -v 3_1)1 + oy + 4
0x ay 0z
d d dv, 0 R 0 0 R
Curl : Vxv vz %Y PO A 1 $+ 9y _ 9 5
ay 0z 0z ax ax ay
: ) 72t 3t %
Laplacian : Vet

Spherical. dl =

a2 Ty a2

drt+rdfb+rsinfdep; dr =risinfdrddde

: ot ., 10t 1
Gradient : \%3 —r+-—0+ ¢
ar r 06 rsinf 3¢
Di v ) o (sinf ug) o8
vergence . -V - — v — — (81 e
rvers 2o U noae T ing 3¢
1 )
Curl : V xv ey [ag(sme Vp) — al:;}f'
1T 1 dv, a( )0.+1 a( ) av,¢
— —— — — — v — PR — —
| smeag arl v rlars " B
19 [ ,0 1 9 ot 1 8%
Laplacian : V2t —-— P T L
pracian 72 8r( 8r)+ 250 30 (Sm ae)+r2 sin2 g 3¢
Cylindrical. dl=ds$+sdgpd +dz% dr =sdsdodz
. ot . 10t » at R
Gradient : Vi —S+ - z
as s8¢
Di _ 1 a( - 130y By,
Ivergence . . ——{SV
& s as s s d¢
19 dvy]. [0 dv,1~ 1[8 dvs ] .
Curl: vy = [0 _ By fou dulg 170 du],
s 0¢ 0z 0z as s | 0s ¢
19 ([ ot 1 8% 32
. . 2
Laplacian : V<t P (sa) 2 3¢2 Py



