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NTNU Institutt for fysikk

Contact during the exam:
Professor Ingve Simonsen
Telephone: 93417 or 47076416

Exam in TFY4240 Electromagnetic Theory
Dec 14, 2010
09:00-13:00

Allowed help: Alternativ C
Authorized calculator and mathematical formula book

This problem set consists of 5 pages.

This exam consists of two problems each containing several sub-problems. Each of the sub-
problems will be given approximately equal weight during grading, except point 2e that will
be given double weight. For your information, I estimate that you will spend about twice the
amount of time on the 2nd problem relative the 1st.

I will be available for questions related to the problems themselves (though not the answers!).
The first round (of two), I plan to do around 10am, and the other one, about two hours later.

The problems are given in English only. Should you have any language problems related to
the exam set, do not hesitate to ask. For your answers, you are free to use either English or
Norwegian.

Good luck to all of you!



ExaMm 1IN TFY4240 ELECTROMAGNETIC THEORY, DEC. 14, 2010 Page 2 of 5
Problem 1.

Consider a rectangle of horizontal and vertical diagonals a and b, respectively, and where we
have placed (static) charges ¢; (i = 1,...,4) at each corner as shown in the above figure.

A coordinate system is placed with its origin at the center of this rectangle so that the
rectangle is in the xz-plane. Relative to this coordinate system, the distance vector to the
observation point P will be denoted r, and the distance vector to charge ¢ is r;.

a) Write down the general expression for the (total) scalar potential V(r) for the four
charges that is valid at any point r (# r;).

b) Describe, in your own words, what is meant by a multi-pole expansion for the scalar
potential. In particular, point out the essential assumption that must be satisfied for
the first few terms of this expansion to represent a good approximation to the potential.

We will from now onwards assume that the dimensions of the rectangle are small compared
to the distance, r, to the observation point P; that is a/r < 1 and b/r < 1 with || = 7.
Approximations to the scalar potential will now be studied for various charge configurations
when the observation point is far away from all the charges. With an approximation, we
mean the dominating (“the largest”) non-zero term contributing to the potential.

c) Write down an approximative expression for the potential V(r) (valid for large r) for
the four charges under the assumption that ¢; + ¢2 + q3 + g4 # 0.
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d)

Now set g9 =q4 =0, g1 = —q3 = ¢ and b = £ > 0. Show in this case that the potential
for the system can be written as
1 p-r

Vi) =-—PT
() drey 12’

(1)

and give an expression for p. What is the quantity p called? Here r denotes a unit
vector in the radial direction. Make a sketch the angular distribution of the of this
potential (for given r).

Assume now that all charges are non-zero (¢; # 0 for all 7); b = ¢ > 0 (with ¢/r < 1); and
that a/b=a/l < 1.

)

f)

g)

We first consider the case where ¢; = g4 = ¢ and g2 = g3 = —¢q. Make a sketch of the
charge distribution indicating the positions of the positive and negative charges. What
is the potential V(r) in this case? | Hint: Make use of the physics of the problem, and
do not try to calculate this directly Of course, such a more lengthy calculation will work
though]. Make a sketch of the of the angular distribution of the potential (for a given
distance r).

Assume now instead that ¢; = g3 = g and g2 = ¢4 = —¢q. Also for this case make a sketch
of the charge distribution indicating the positions of the positive and negative charges.
Why will in this case (the angular distribution of) the potential be more complicated
than in the previous sub-problem?

Find an approximative expression for the potential V' (r) in the above case ( i.e. when
1 = q3 = q and g2 = q4 = —q) and show that it satisfies

V(r) rlg (2)

Make a sketch of the angular distribution of the potential in this case (assuming a
constant distance 7). What is this angular pattern called?
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Problem 2.

A I(t) = Lyexp(—iwt)

We consider a thin, straight, conducing wire of length ¢ that is oriented along the z-axis as
shown in the figure above. The wire carries the time-varying current

1(t) = Ipexp (—iwt) (3)

everywhere along its length ¢. Here Iy and w are both positive constants. The system is a
simple model for an antenna.

a) Charge will only build up at the endpoints of the wire. Explain why this is so. Find an
expression for the time-dependent charge, Q(t), building up at one endpoint.

b) Use your expression for Q(t) to determine the dipole moment p(¢) of the simple antenna.
c) Argue why the current density can be written as
I(r,t) = 21(t)5(x)d(y)0(¢/2) — |2]), (4)

where §(-) is the Dirac delta-function, 6(-) is the (Heaviside) step-function, and z is a
unit vector in the positive z-direction.

We will now study the electromagnetic field radiated from the antenna. To this end, we
will start by calculate the potentials. In the Lorentz-gauge the vector potential satisfies the
equation

1
VQA(I‘, t) - g@?A(I’, t) = _ILLOJ(r7 t)a (5)

where ¢ = 1/,/gouo is the speed of light in vacuum. Here € and pg are the electric permitivity
and magnetic permeability of free space , respectively.
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d) By using the Green’s function for the wave-equation

P Lt
TRt .

47| — /| ’

g(ra t|I‘/, t/) = -

show that a solution to Eq. (5) is

Afrt) =10 / gy 1) (7)

 4n r —1/|

What is the meaning of r and r’'? Moreover, what is the expression for ¢,, and what is
the physical interpretation of this quantity?

e) Calculate the vector potential A(r,¢) under the assumption that r > ¢ and show that
it can be written as (k = w/c)

21 k? kr — iwt
At~z 2 g, <2cose> exp (ikr — iwt) 8
T

~—

cos b kr

It will now be assumed that the wavelength (A = 27/k) and distance to the observation point
(r) are so that kr > 1.

f) Derive an expression for the magnetic field H(r,¢) (under the condition kr > 1).
[Answer : H~ L ik x A
1o
g) Calculate the corresponding electric field E(r,¢) (under the same assumption as in the
previous sub-problem). [Hint : Use Amperes law].
h) Obtain an expression for the time-averaged Poyntings vector, (S), (= 3E x H*), in
terms of the known quantities of the problem.

The radiation pattern of the antenna is defined as

ap _
aa
where P = [dQ2dP/dY = [ (S), - dA is the total power radiated by the antenna.

()l 72, (9)

i) Calculate dP/d) and show that

aP ., (k¢ 9
g o sin (2 cos@> tan“ 6. (10)

j) Assume that the antenna is small compared to the wavelength, i.e. k¢ < 1, and obtain
the expression for dP/dS) in this limit.

k) Argue why your expression for dP/dS) in the limit k¢ < 1 is reasonable. Make a sketch
of the radiation pattern in this case. What is this pattern called?



FUNDAMENTAL CONSTANTS

e = 8.85x10712C2/Nm? (permittivity of free space)
o = 4m x 107N /A2 (permeability of free space)
c = 3.00x108m/s (speed of light)

e = 160x1071°C (charge of the electron)

m = 9.11x10 3 kg (mass of the electron)

SPHERICAL AND CYLINDRICAL COORDINATES

Spherical
[ x = rsinfcos¢ % = sinfcos¢r +cosbcosgh —sin ¢
{ y = rsinfsing 1y = sinesin¢f'+cos€sin¢é—|—cos¢$
| 2 = rcost | 2 cosOF —sin6
[ r = X242+ 22 [ F = sinfcos¢X+sinfsingy+ cosfZ
160 = tan1(V/x2+y2/2) 6 = cosOcosgk+cosfsing§y — sin 62
¢ = tan~!(y/x) | ¢ = —singR+cosgy
Cylindrical
[ x = scos¢ % = cosp§—singe
{ y = ssing {§ = sing§+cospe
Z = z Z = 1
s = JxZ4y? [ § = cos@ X +sin ¢ ¥
{ ¢ = tan~l(y/x) 1 ¢ = —singk+cosgy
lz = 2 i = 1




BASIC EQUATIONS OF ELECTRODYNAMICS

Maxwell’s Equations

In general - In matter :
1 .
V.E=— V.-D=pf
€0
B
V xE = _98 VXE= ot
< 1 4 i
V.B=0 V.-B=0
oD
oE VxH-= -
L VXB=M0J+M0€0¥ X Jf+8t
Aucxiliary Fields
Definitions - Linear media :
D =¢E+P P=¢yx.E, D=¢cE
1 1
H=—B-M M=y,H, H=-B
Ko (23
Potentials
0A
E=-VV - —, B=VxA
ot
Lorentz force law
F=gE+vxB)
Energy, Momentum, and Power
1 2, 1 »
Energy : U=~ e+ —B° ) dr
2 Ho

Momentum : P=¢) [(ExB)dr

1
Poynting vector : S = —(E x B)
Mo

Larmor formula: P = ﬂqza2
bre



VECTOR IDENTITIES

Triple Products
(1) A-BxC)=B-(CxA)=C-(AxB)
2) AxBxC)=BA -C)—-C(A-B)
Product Rules
(3 V(fe)=f(Vg)+g(Vf)
(4) VAA-B)=Ax(VxB)+Bx (VxA)+A-V)B+B-V)A
5) V-(fA=f(V-A)+A-(V))
(6) V-AxB)=B-(VxA)—A (VxB)
(7)) Vx(fA)=f(VxA)-Ax (V)
() VX(AxB)=B-V)A—(A-V)B+A(V-B)—B(V-A)

Second Derivatives

9 V- (VxA)=0
(10) Vx(Vf)=0

(11) Vx (VXA =V(V.A)—-V2A

FUNDAMENTAL THEOREMS

Gradient Theorem :  [P(Vf)-dl = f(b) — f(a)
Divergence Theorem : [(V-A)dr = A -da

Curl Theorem : J(VxA)-da=¢A- dl




VECTOR DERIVATIVES

Cartesian. dl=dxx+dyy+dzi; drv=dxdyd:
Gradient Vi azAJraz +azA
radient : hid
0x ay y 07
0 0
Divergence: V -v 3_1)1 + oy + 4
0x ay 0z
d d dv, 0 R 0 0 R
Curl : Vxv vz %Y PO A 1 3+ 9y _ 9V 5
ay 0z 0z ox ax ay
: ) 7%t 3t %
Laplacian : Vet

Spherical. dl =

a2 Ty T a2

drt+rdfb+rsinfdpd; dr =risinfdrddde

: ot ., 10t 1
Gradient : \%3 —r+-—0+ ¢
ar r 06 rsinf 3¢
Di v ) o (sinf up) o8
vergence . -V - — v — — (81 —_—
rvers Zars U noa6 T ing 3¢
1 )
Curl : V xv , (sm9 Vp) — 2% |
rsinf | 06 8q§
1T 1 8o, a( )0.+1 a( ) av,¢
— —— — — — v — JR— — —
| smeag ol rlars "7 B
19 [ ,0 1 9 at 1 8%
Laplacian : V2t —— 0— )+ ————
practan 72 ar ( ar) t Zsine 50 (Sm ae) t nZe 92
Cylindrical. dl=ds$+sdpd +dz%; dr =sdsdedz
. ot . 1ot . at R
Gradient : Vi —S+ - z
as s8¢
Di v.ov 1 a( L4 13vy By,
vergence . . ——{SV
& s as s s d¢
19 dvy]. [0 dv,1~ 18 dvs ] .
Curl: vy = [0 _ By fou dulg 170 du],
s 0¢ 0z 0z as s [ 0s ¢
19 ([ ot 1 8% 32
. . 2
Laplacian : Vet P (sa) 2392 T a2



