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Problem 1.

a)

Briefly describe the "method of images” and the type of problems it can be used to
solve.

A point charge ¢ is held at a fixed position outside a grounded conducting sphere of radius
R. The distance between the point charge and the center of the sphere is a. We take the z
axis to pass through both the center of the sphere (where z = 0) and the point charge (where
z = a). See Fig. 1 for an illustration of the geometry.

Z
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Figure 1: A point charge ¢ outside a grounded conducting sphere of radius R.

b) (Double weight) We wish to find the potential V' at an arbitrary point r outside the

d)

sphere. Show that the problem can be solved by introducing an image charge ¢’ where

R
/

=_= 1
q 4, (1)

which is positioned on the z axis at z = b where

R2

a .

b (2)

Give an expression for the potential V() outside the sphere.

Find the induced surface charge density o (which depends on the angle 6, see figure)
and the total induced charge ) on the surface of the sphere.

Suppose next that the conducting sphere is not grounded, but is instead held at a fixed
potential Vj # 0 (with respect to infinity, where V' — 0). Again we wish to find the
potential everywhere outside the sphere. Solve this problem by introducing one more
image charge. What is the charge and position of this second image charge?
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Problem 2.
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Figure 2: Two infinite straight wires a distance d apart.

Consider two infinitely long, straight, electrically neutral, parallel wires labeled 1 and 2 as
shown in Fig. 2. The wires lie in the xy plane, are oriented along the y axis, and each wire
carries the same current I in the positive y direction. The wires have xz-coordinate +d/2, so
the distance between the wires is d.

a) Show that the magnetic field produced by each wire has magnitude pol/27r where 7 is
the distance to the wire. Use this to find the force, per unit length, on wire 1. Is the
force attractive or repulsive?

b) For a general problem in electrodynamics, briefly explain the meaning of the 3 terms in

e d [ ,

the equation

¢) (Double weight) By an appropriate application of (3), give an alternative calculation of
the force per unit length on wire 1. [Hint: In your calculation, give a key role to the
plane z = 0 of points equidistant from both wires.]
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Problem 3.

a) Show that in the Lorenz gauge, the electromagnetic potentials V' and A satisfy the
inhomogeneous wave equations

19°V
VQV - ?W == —,0/60, (4)
19*A
2

State the definition of the Lorenz gauge.

Figure 3: A particle of charge ¢ moving with constant velocity v along the z axis.

In the following we will consider a derivation of the fields produced by a point charge ¢
moving with constant velocity, by directly solving the inhomogeneous wave equations for
the potentials for this special case. Taking the particle to be moving along the z axis with
velocity v = v2 with v > 0 (see Fig. 3), the source densities for the point charge are

p(rt) = qo(x)d(y)o(z — vi), (6)
J(r,t) = p(r,t)v (7)

(we take the particle to be at the origin at ¢ = 0). Since J o 2, the only nonzero component
of A will be A,. Furthermore, because of the uniform motion, the z and ¢ dependence of the
potentials must be through the combination z — vt = £.

b) Show that in this case (4) can be rewritten as the differential equation

o*’vV  9*V

2
e O Ls@)syee) (8)

+ (1 _62)3752 T

where 8 =v/c.

¢) By making another change of variables from ¢ to 2/ = &, where v = 1/4y/1 — 32,
rewrite (8) as a differential equation in the variables z, y, and 2’. Based on the form of
this differential equation, and using your knowledge of the solution of a mathematically
related but physically simpler problem, show that V' is given by

Ya
Viz,y,z,t) = . 9
(@9,2,1) 4meg/22 + y2 + v2(2 — vt)? ©)
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d) Find the corresponding solution for A,(z,y, z,t). [Hint: Use the mathematical similar-
ities between the problems for V' and A, .

e) Show that the electric field is given by

vqg x4+ yy+ (z—ot)z

E(r,t) = .
(r¢) dmeg [22 + y? + 72 (2 — vt)?]3/2

f) Show that (10) can be rewritten as

_ ¢ R 1-p
 4meg R2 (1 — 32sin? 0)3/2’

E(r,t) (11)
where R is the vector pointing from the position vtZ of the particle to the observation
point r = z& + yy + 22, and 0 is the angle between R and v (see Fig. 3).

g) Briefly discuss how the magnitude of E varies with direction 6 for an ultrarelativistic
particle (5 & 1), especially comparing the forward/backward directions (6 ~ 0, 7) with
the transverse directions (0 ~ w/2). Do the same thing for a very nonrelativistic particle

(8~ 0).

h) Consider an (imagined) sphere of radius R centered on the particle at time ¢t. What is
the energy per unit time flowing through the surface of this sphere at time ¢?

i) Give a brief definition of radiation for a general problem in electrodynamics. For
the special problem considered earlier, namely that of a particle moving with constant
velocity, does the particle radiate? Justify your answer.
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Formulas

Some formulas that you may or may not need (you should know the meaning of the symbols
and possible limitations of validity):

oV oV
_ v _ov 12
7 0 |:67’L outside on inside:| ( )
F=1ItxB (13)
T%j =€ (EZE] — ;6ZJE2) + /Llo (BZB] — ;(SZJBQ> (14)
1
d(ax) = al d(x) (15)



FUNDAMENTAL CONSTANTS

e = 8.85x10712C2/Nm? (permittivity of free space)
o = 4m x 107N /A2 (permeability of free space)
c = 3.00x108m/s (speed of light)

e = 160x1071°C (charge of the electron)

m = 9.11x10 3 kg (mass of the electron)

SPHERICAL AND CYLINDRICAL COORDINATES

Spherical
[ x = rsinfcos¢ % = sinfcos¢r +cosbcosgh —sin ¢
{ y = rsinfsing 1y = sinesin¢f'+cos€sin¢é—|—cos¢$
| 2 = rcost | 2 cosOF —sin6
[ r = X242+ 22 [ F = sinfcos¢X+sinfsingy+ cosfZ
160 = tan1(V/x2+y2/2) 6 = cosOcosgk+cosfsing§y — sin 62
¢ = tan~!(y/x) | ¢ = —singR+cosgy
Cylindrical
[ x = scos¢ % = cosp§—singe
{ y = ssing {§ = sing§+cospe
Z = z Z = 1
s = JxZ4y? [ § = cos@ X +sin ¢ ¥
{ ¢ = tan~l(y/x) 1 ¢ = —singk+cosgy
lz = 2 i = 1




BASIC EQUATIONS OF ELECTRODYNAMICS

Maxwell’s Equations

In general - In matter :
1 .
V.E=— V.-D=pf
€0
B
V xE = _98 VXE= ot
< 1 4 i
V.B=0 V.-B=0
oD
oE VxH-= -
L VXB=M0J+M0€0¥ X Jf+8t
Aucxiliary Fields
Definitions - Linear media :
D =¢E+P P=¢yx.E, D=¢cE
1 1
H=—B-M M=y,H, H=-B
Ko (23
Potentials
0A
E=-VV - —, B=VxA
ot
Lorentz force law
F=gE+vxB)
Energy, Momentum, and Power
1 2, 1 »
Energy : U=~ e+ —B° ) dr
2 Ho

Momentum : P=¢) [(ExB)dr

1
Poynting vector : S = —(E x B)
Mo

Larmor formula: P = ﬂqza2
bre



VECTOR IDENTITIES

Triple Products
(1) A-BxC)=B-(CxA)=C-(AxB)
2) AxBxC)=BA -C)—-C(A-B)
Product Rules
(3 V(fe)=f(Vg)+g(Vf)
(4) VAA-B)=Ax(VxB)+Bx (VxA)+A-V)B+B-V)A
5) V-(fA=f(V-A)+A-(V))
(6) V-AxB)=B-(VxA)—A (VxB)
(7)) Vx(fA)=f(VxA)-Ax (V)
() VX(AxB)=B-V)A—(A-V)B+A(V-B)—B(V-A)

Second Derivatives

9 V- (VxA)=0
(10) Vx(Vf)=0

(11) Vx (VXA =V(V.A)—-V2A

FUNDAMENTAL THEOREMS

Gradient Theorem :  [P(Vf)-dl = f(b) — f(a)
Divergence Theorem : [(V-A)dr = A -da

Curl Theorem : J(VxA)-da=¢A- dl




VECTOR DERIVATIVES

Cartesian. dl=dxx+dyy+dzi; drv=dxdyd:
Gradient Vi azAJraz +azA
radient : hid
0x ay y 07
0 0
Divergence: V -v 3_1)1 + oy + 4
0x ay 0z
d d dv, 0 R 0 0 R
Curl : Vxv vz %Y PO A 1 3+ 9y _ 9V 5
ay 0z 0z ox ax ay
: ) 7%t 3t %
Laplacian : Vet

Spherical. dl =

a2 Ty T a2

drt+rdfb+rsinfdpd; dr =risinfdrddde

: ot ., 10t 1
Gradient : \%3 —r+-—0+ ¢
ar r 06 rsinf 3¢
Di v ) o (sinf up) o8
vergence . -V - — v — — (81 —_—
rvers Zars U noa6 T ing 3¢
1 )
Curl : V xv , (sm9 Vp) — 2% |
rsinf | 06 8q§
1T 1 8o, a( )0.+1 a( ) av,¢
— —— — — — v — JR— — —
| smeag ol rlars "7 B
19 [ ,0 1 9 at 1 8%
Laplacian : V2t —— 0— )+ ————
practan 72 ar ( ar) t Zsine 50 (Sm ae) t nZe 92
Cylindrical. dl=ds$+sdpd +dz%; dr =sdsdedz
. ot . 1ot . at R
Gradient : Vi —S+ - z
as s8¢
Di v.ov 1 a( L4 13vy By,
vergence . . ——{SV
& s as s s d¢
19 dvy]. [0 dv,1~ 18 dvs ] .
Curl: vy = [0 _ By fou dulg 170 du],
s 0¢ 0z 0z as s [ 0s ¢
19 ([ ot 1 8% 32
. . 2
Laplacian : Vet P (sa) 2392 T a2



