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Problem 1.

Consider an electrostatics problem involving two dielectric media 1 and 2, with electric permit-
tivities €; and €9, respectively. Show that

a) inside a given medium m = 1,2, the potential V(r) sat-
isfies the Poisson equation

=)

vy = 2L (1) 2

€m

b) the boundary conditions for V' at the boundary between
media 1 and 2 can be written

Vo—Vi = 0, (2)
e0hVo—a 0,V1 = —oy. (3)

Here the subscripts 1 and 2 on V refer to which side of the boundary the potential is
to be evaluated, and 0,V = n - VV, where the unit vector n (defined at each bound-
ary point) is perpendicular to the boundary, pointing from medium 1 to medium 2, as
shown in the figure above.

Consider (see the figure to the right) a
spherical vacuum cavity! of radius R sur-
rounded by a dielectric medium. The elec- Z

tric permittivities of the cavity and the E,
surrounding medium are ¢y and €, respec-
tively. A uniform external electric field €
of magnitude E; is imposed on the sys- r

tem, such that far away from the cavity

the electric field E approaches the external

field. 0

We choose a coordinate system with the ori-
gin at the center of the spherical cavity and
the z axis pointing in the direction of the
external field, which thus can be written
Ey = Epz. In the following we wish to find
the potential V(7) at an arbitrary point 7
(with spherical coordinates (r,6,¢)) in the
system. Due to the symmetry of the prob-
lem, V(7) will be independent of ¢ and can

'The Norwegian word for cavity is ” hulrom”.
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in each of the two media be expanded as
V(r) = E At + 2L P (cos9) (4)
£ s

where Py(z) is the Legendre polynomial of degree ¢ in the variable z = cosf (in particular,
Py(z) =1, Pi(z) = z).

c) Find the potential both outside and inside the cavity. What is the electric field inside
the cavity?

Problem 2.

Consider the equation

dt
where Uep, = [ d3r 3(e0E? + iBQ).

AUem dw
— ¢S da -2 5
7{ a2 (5)

a) Explain the meaning of Eq. (5) (including the meaning of its various terms) for a gen-
eral system.

A straight and infinitely long electrical wire has
a circular cross section with radius 6. The wire
is made from an ohmic material with conductiv-
ity 0. A steady current I flows in the wire.
The associated current density is uniform in the
wire.

AN

We introduce cylindrical coordinates (s, ¢, z), with the
z axis coinciding with the wire axis, such that the
current flows in the positive z direction. The fig-
ure to the right shows a segment of length L of the
wire.

b) Find E and B at an arbitrary point in the wire,
expressed in terms of parameters given. -

a
v

c) Use Eq. (5) to find an expression for dW/dt for
the segment of the wire shown in the figure. How
is the result related to the electrical resistance of
the segment?
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Problem 3.

Consider a spherical shell with a time-dependent radius R(¢). (As a concrete example, R(t)
may describe a harmonic oscillation around an average radius. However, we will not assume
any particular form of the function R(t) here.) The shell has a total charge @ that is conserved
and at all times uniformly distributed on the shell surface. There is vacuum both outside and
inside the shell. We introduce a coordinate system whose origin (r = 0) is the center of the
shell.

A general hint: When asked below to find E or B, you are not expected to find the poten-
tial(s) first, as this may here be significantly harder than instead making use of laws obeyed
by the fields.

a) Show that the (volume) charge density p(r,t) due to the shell is
Q

47r?

p(r,t) = o(r — R(t)) (6)

where 7 = |r| and §(u) is the Dirac delta function.
b) Find the electric field E(r,t) at an arbitrary point = (outside or inside the shell).

It can be shown that the current density j(r,t) due to the shell is

jtr1) = 900

o(r — R(t)) 7 (7)
where R(t) = %gt) and 7 =r/r.
c) Show that the continuity equation for electric charge,

dp .

is satisfied.
d) Find the magnetic field B(r,t) at an arbitrary point r.

e) Does the shell radiate? Justify your answer.
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Formulas

Some formulas that you may or may not need (you should know the meaning of the symbols
and possible limitations of validity):

/ 11 dr Pi(x)Po (x) = ei Y ()
j=ocFE (10)
o= 158 o
%@(u) — 5(u) (12)

%5(@ _ —5(5) (13)

Vir,t) = 47360 / & ‘qur/’fj,? (14)




FUNDAMENTAL CONSTANTS

e = 8.85x10712C2/Nm? (permittivity of free space)
o = 4m x 107N /A2 (permeability of free space)
c = 3.00x108m/s (speed of light)

e = 160x1071°C (charge of the electron)

m = 9.11x10 3 kg (mass of the electron)

SPHERICAL AND CYLINDRICAL COORDINATES

Spherical
[ x = rsinfcos¢ % = sinfcos¢r +cosbcosgh —sin ¢
{ y = rsinfsing 1y = sinesin¢f'+cos€sin¢é—|—cos¢$
| 2 = rcost | 2 cosOF —sin6
[ r = X242+ 22 [ F = sinfcos¢X+sinfsingy+ cosfZ
160 = tan1(V/x2+y2/2) 6 = cosOcosgk+cosfsing§y — sin 62
¢ = tan~!(y/x) | ¢ = —singR+cosgy
Cylindrical
[ x = scos¢ % = cosp§—singe
{ y = ssing {§ = sing§+cospe
Z = z Z = 1
s = JxZ4y? [ § = cos@ X +sin ¢ ¥
{ ¢ = tan~l(y/x) 1 ¢ = —singk+cosgy
lz = 2 i = 1




BASIC EQUATIONS OF ELECTRODYNAMICS

Maxwell’s Equations

In general - In matter :
1 .
V.E=— V.-D=pf
€0
B
V xE = _98 VXE= ot
< 1 4 i
V.B=0 V.-B=0
oD
oE VxH-= -
L VXB=M0J+M0€0¥ X Jf+8t
Aucxiliary Fields
Definitions - Linear media :
D =¢E+P P=¢yx.E, D=¢cE
1 1
H=—B-M M=y,H, H=-B
Ko (23
Potentials
0A
E=-VV - —, B=VxA
ot
Lorentz force law
F=gE+vxB)
Energy, Momentum, and Power
1 2, 1 »
Energy : U=~ e+ —B° ) dr
2 Ho

Momentum : P=¢) [(ExB)dr

1
Poynting vector : S = —(E x B)
Mo

Larmor formula: P = ﬂqza2
bre



VECTOR IDENTITIES

Triple Products
(1) A-BxC)=B-(CxA)=C-(AxB)
2) AxBxC)=BA -C)—-C(A-B)
Product Rules
(3 V(fe)=f(Vg)+g(Vf)
(4) VAA-B)=Ax(VxB)+Bx (VxA)+A-V)B+B-V)A
5) V-(fA=f(V-A)+A-(V))
(6) V-AxB)=B-(VxA)—A (VxB)
(7)) Vx(fA)=f(VxA)-Ax (V)
() VX(AxB)=B-V)A—(A-V)B+A(V-B)—B(V-A)

Second Derivatives

9 V- (VxA)=0
(10) Vx(Vf)=0

(11) Vx (VXA =V(V.A)—-V2A

FUNDAMENTAL THEOREMS

Gradient Theorem :  [P(Vf)-dl = f(b) — f(a)
Divergence Theorem : [(V-A)dr = A -da

Curl Theorem : J(VxA)-da=¢A- dl




VECTOR DERIVATIVES

Cartesian. dl=dxx+dyy+dzi; drv=dxdyd:
Gradient Vi azAJraz +azA
radient : hid
0x ay y 07
0 0
Divergence: V -v 3_1)1 + oy + 4
0x ay 0z
d d dv, 0 R 0 0 R
Curl : Vxv vz %Y PO A 1 3+ 9y _ 9V 5
ay 0z 0z ox ax ay
: ) 7%t 3t %
Laplacian : Vet

Spherical. dl =

a2 Ty T a2

drt+rdfb+rsinfdpd; dr =risinfdrddde

: ot ., 10t 1
Gradient : \%3 —r+-—0+ ¢
ar r 06 rsinf 3¢
Di v ) o (sinf up) o8
vergence . -V - — v — — (81 —_—
rvers Zars U noa6 T ing 3¢
1 )
Curl : V xv , (sm9 Vp) — 2% |
rsinf | 06 8q§
1T 1 8o, a( )0.+1 a( ) av,¢
— —— — — — v — JR— — —
| smeag ol rlars "7 B
19 [ ,0 1 9 at 1 8%
Laplacian : V2t —— 0— )+ ————
practan 72 ar ( ar) t Zsine 50 (Sm ae) t nZe 92
Cylindrical. dl=ds$+sdpd +dz%; dr =sdsdedz
. ot . 1ot . at R
Gradient : Vi —S+ - z
as s8¢
Di v.ov 1 a( L4 13vy By,
vergence . . ——{SV
& s as s s d¢
19 dvy]. [0 dv,1~ 18 dvs ] .
Curl: vy = [0 _ By fou dulg 170 du],
s 0¢ 0z 0z as s [ 0s ¢
19 ([ ot 1 8% 32
. . 2
Laplacian : Vet P (sa) 2392 T a2



