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Problem 1

(a) Briefly describe the method of images” and the type of problems it can be used to solve.

Let space be divided into two regions filled with simple dielectric media 1 and 2 with electric permittiv-
ities €1 and e, respectively. The interface between the regions is an infinite plane. A point charge ¢ sits
in medium 2 a distance d from the interface.

We introduce a cartesian coordinate system with the z axis perpendicular to the interface and pass-
ing through the point charge, with origin and direction chosen such that the interface is at z = 0,
medium 1 is in the region z < 0, medium 2 is in the region z > 0, and the point charge has coordinates
(z,y,2) = (0,0,d) (see the figure).

d medium 2

medium 1

(b) Use the method of images to find the potential V' everywhere. [Hint: All image charges involved can
be taken to be at distance d from the interface.]

C m e 1orce on € point charge g. Lomment on whether € result 1s reasonable 101 € specila.
Find the f F on th int ch C t hether th It i ble for th ial
case €1 = €9.

(d) Find the volume bound charge density.

(e) Find the surface bound charge density.



Problem 2

As illustrated in the figure below, an ohmic bar with resistance R, length L and mass m can slide
without friction on two parallel, perfectly conducting rails (which extend infinitely to the right). A
uniform magnetic field B points into the page. At time ¢ = 0 a physicist sets the bar in motion by giving
it an initial velocity vy towards the right. (For ¢ > 0 the physicist does not act with any force on the bar.)

(a) Argue that a current I will flow in the circuit consisting of the (moving) bar and the rails to the
left of it. Find an expression for I which involves the bar’s velocity v towards the right. What is the
direction of the current?

(b) Show that for ¢ > 0 the time dependence of the current takes the form I(¢) = Iyexp(—at), and give
expressions for the constants o and Ip. [Hint: Consider Newton’s 2nd law for the bar in the horizontal
direction (i.e. in the bar’s direction of motion).]

(c) Calculate the total energy dissipated as Joule heat during the motion of the bar (i.e. from ¢t =0 to
t = 00). Give a physical interpretation of the result.



Problem 3

By introducing the scalar potential V', it can be shown that the Maxwell equations for electrostatics are

equivalent to a single differential equation for V', the Poisson equation V2V = —p/¢q, whose solution for
a localized charge distribution is
1 p(r’)
V(r)= d3r! . 1
(r) 47reo/ " |r — /| (1)

(a) By introducing the vector potential A, show that the Maxwell equations for magnetostatics are
equivalent to a single differential equation for A. Derive this differential equation.

(b) (i) Show that B is invariant under the gauge transformation A — A’ = A+ VA, where X is an arbi-
trary function of r. (ii) Argue that one can impose the so-called Coulomb gauge condition V- A = 0 on
A, and derive an expression for A(r) in the Coulomb gauge, for a (steady) localized current distribution.

(¢) Show that for static problems, in the Coulomb gauge, the electromagnetic field momentum can be
expressed as

Pry = /d3r p(r)A(r). (2)

[Hints: It may be useful to consider the cartesian components of Pgy. You may assume that all ”surface
terms” at infinity (obtained from integration by parts) vanish.]

(d) Consider a system consisting of three parts: A point charge ¢ at (x,y, z) = (0,0,d), a point charge
—q at (0,0, —d), and a point magnetic dipole with moment m at the origin (0,0,0). Calculate Pgy for
this system.

(e) This question concerns the roles of the Poynting vector in general problems in classical electromag-
netic theory. (i) Briefly state how the Poynting vector enters into calculations of electromagnetic field
momentum. (ii) The Poynting vector also appears in energy considerations. Briefly describe the inter-
pretation/role of the Poynting vector in this context.



Formulas

Some formulas that you may or may not need (you should know the meaning of the symbols and possible

limitations of validity):
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FUNDAMENTAL CONSTANTS

€0 = 8.85x10712C2/Nm? (permittivity of free space)
ro = 4m x 107" N/A? (permeability of free space)
c = 3.00x10%m/s (speed of light)
e = 160x1071°C (charge of the electron)
m = 9.11x10 3 kg (mass of the electron)
SPHERICAL AND CYLINDRICAL COORDINATES
Spherical
[ x = rsinfcos¢ % = sinfcosdf+cosfcosph —sin ¢
{§ y = rsinfsing 1y = sin@sin¢f'+cos9sin¢é—|—cos¢$
| 2 = rcost Z cos@F —sinh h
[ ro= Jx24y24 722 [ F = sinfcos¢X +sin fsing § + cosOZ
160 = tan~1(/x24+y2/2) 16 = cosfcosg X+ cosfsingy —sin 0z
¢ = tan"l(y/x) | @ = -—singX+cosgp§
Cylindrical
[ x = scos¢ (% = cos¢p§—sing
1y = ssing § = sings+cosg
lz = 2z i = 17
s = JxZ4y2 [ § = COsS@PX +sin ¢y
{ ¢ = tan~l(y/x) ¢ = —sinpX+cospy
7 =z i = 1




BASIC EQUATIONS OF ELECTRODYNAMICS

Maxwell’s Equations

In general - In matter :
1 ’
[ Vv.E=—, V.D=p,
€0
oB
B VXE=—-—
VXE=—— ot
< 1 *
V.-B=0 V.-B=0
oD
oE - it
kVXB=.LL0J+M0€0§ .VXH Jf+8t
Auxiliary Fields
Definitions : Linear media :
D=¢E+P P=¢yx.E, D=cE
1 1
H=—B-M M=y,H H=-B
o 7
Potentials
0A
E=-VV - —, B=V xA
ot
Lorentz force law
F=qgqE+vxB)
Energy, Momentum, and Power
1 2 15
Energy : U=~ e0E°+ —B° ) dr
2 )

Momentum : P=¢ [(E xB)dr

1
Poynting vector : S = —(E x B)
Mo

Mo
6rc

Larmor formula: P = c]2a2



VECTOR IDENTITIES

Triple Products

(1
)

A - BxC)=B-(CxA)=C-(AxB)

AxBxC)=BA-C) —-C(A-B)

Product Rules

(3)
4
5
(6)
(7
(8)

V(fg) = f(Vg)+g(V[)
VA-B)=Ax(VxB)+Bx(VxA) +(A V)B4 B-V)A
V-(fA=f(V-A)+A-(Vf)
V.-AxB)=B-(VxA)—A-(VxB)
VX(fA)=f(VxA) —Ax(Vf)

VXx(AxB)=B V) A-(A-V)B+A(V-B)—B(V-A)

Second Derivatives

®

V- (VxA)=0

(10) V x(Vf)=0

1)

VX (VxA)=V(V-A) - V32A

FUNDAMENTAL THEOREMS

Gradient Theorem : fab(V f)-dl= f(b) — f(a)

Divergence Theorem : [(V-A)dt = § A - da

Curl Theorem : J(VxA) -da=§A-dl




VECTOR DERIVATIVES

Cartesian. dl=dxx+dyy+dzi, dt=dxdydz
Gradient - atAJrat +8t
radient : —

0x ay y dz
0 0 0

Divergence: V -v Ux + i + bz
ox ay 0z

Curl : Vxv %—% X+ avx—aﬁ y+ %—% z

ay dz 0z 0x 0x ay
_ ) 8%t 9%t o4
Laplacian : V<t

Spherical. dl =

Gradient : Vit —
raduen o T rae +rsm98¢¢
Di V.v L9 )+ - L9 (sing vg) + —— e
vergence . . - — v — — (81 —_—
rergenc 2 o 9o VY)Y U0 90
1 [0 3
Curl : V xv _ —(smt9v¢,)—ﬁ 3
rsinf | 06 a¢
1T 1 dv, @ L1 3,7
- _ = 0+ - | — -
r[81n9 59 "”] +r[3 (rve) ae}d’
19 ot 1 9 ot 1 8%
Laplacian V2 —— (=) + ————(sin0— —
pracian 2 ar (r ar) t Zsine 30 (Sm ae) t 20 042
Cylindrical. dl=ds§+sdop¢ +dz2;, dr =sdsdedz
ot 3 1 ot ~ ot
Gradient . Vit 8_ 8¢¢+_z
10 18v¢ avz
Di . V. = (ss
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Curl :

Laplacian : V2t

dri+rdod +rsinfdpp; dr=rlsin@drddde

dt 10t a 1




