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Problem 1.

Consider two fixed, parallel, infinitely long cylinders of radius b whose cross sections are shown
as grey disks in the figure below. The cylinder axes are parallel to the z axis (not shown)
which points out of the paper plane. Labeling the cylinders 1 and 2, the cylinder axes have
x-coordinates x1 = −w, x2 = w, and y-coordinates y1 = y2 = 0. Cylinder α (α = 1, 2) has a
surface charge density σα(r) on the curved cylinder surface. The space between the cylinders
is vacuum with electric permittivity ϵ0. The electric field produced by cylinder α at a point
r = (x, y, z) will be denoted by Eα(r).
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a) 1. Consider a finite segment of length L of cylinder 1. Let F be the electric force
on this segment due to cylinder 2. Write down an expression for F that takes the
form of some kind of spatial integral involving some of the functions introduced
above.

2. Assume that the surface charge density σα is the same everywhere on the surface.
Show that for r outside cylinder α,

|Eα(r)| =
b|σα|
ϵ0sα

(1)
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where sα is the distance from r to the cylinder axis. What is the direction of
Eα(r)? Also determine Eα(r) inside the cylinder. (Hint: Make use of symmetry
arguments.)

Alternatively, the force F defined above can be expressed as

F =

∮
a

↔
T · da− d

dt

∫
Ω

S

c2
d3r (2)

where Ω is an appropriately chosen volume and a is the surface bounding Ω.

b) Again, assume that the surface charge density σα is the same everywhere on the surface
(with σ1 ̸= σ2 in general). Then, by symmetry, F must be parallel to x̂, so it suffices to
consider Fx. Use (2) to calculate Fx. (Hints: Argue that the volume Ω can be chosen
as follows: for each z between −L/2 and L/2 it has the same cross section, taking the
shape of a “half-disk” with radius R, as shown by the thick dashed lines in the figure
on the previous page. Furthermore, show/argue that in the limit R → ∞ the surface
integral in (2) reduces to the contribution from the flat surface at x = 0.)

Problem 2.

Consider a simple (i.e. linear and isotropic) non-conducting medium. You may assume that

� the electric permittivity ϵ is real with ϵ ≥ ϵ0, where ϵ0 is the vacuum permittivity,

� the magnetic permeability µ is to a very good approximation equal to the vacuum
permeability µ0,

� there is no free charge or free current anywhere.

Then both E and B will satisfy the wave equation in the medium, with wave velocity
v = 1/

√
ϵµ, which can also be expressed as v = c/n, where c = 1/

√
ϵ0µ0 is the speed of

light in vacuum and n is the refractive index, which is real with n ≥ 1.

a) Consider the plane wave solution (using complex notation, with ω and k real)

Ẽ = Ẽ0e
i(k·r−ωt), B̃ = B̃0e

i(k·r−ωt) (3)

of the wave equations for E and B, where ω = vk (with k = |k|).

1. Show that both Ẽ and B̃ are perpendicular to k, and that

B̃ =
1

ω
(k × Ẽ). (4)

2. Evaluate Eq. (4) when Ẽ0 = Ẽ0ŷ and k = k(cos θ ẑ + sin θ x̂).
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Next, consider two simple non-conducting media 1 and 2. Each of these media possesses
the general properties discussed earlier. The two media are separated by a flat inter-
face. A plane electromagnetic wave in medium 1 is incident on the interface, giving rise to a
reflected wave in medium 1 and a transmitted wave in medium 2.

We choose a coordinate system such that the interface is the xy plane (i.e. at z = 0), with
medium 1 in the region z < 0 and medium 2 in the region z > 0. The incident wave has
(angular) frequency ωI and wavevector kI . The corresponding quantities are ωR and kR

for the reflected wave and ωT and kT for the transmitted wave. Then, using the boundary
conditions for this system,

ϵ1E
⊥
1 = ϵ2E

⊥
2 , (5)

B⊥
1 = B⊥

2 , (6)

E
∥
1 = E

∥
2 , (7)

B
∥
1 = B

∥
2 , (8)

it can be shown that the exponential factors ei(k·r−ωt) for the three waves must be identical
for all times t and all r in the interface, which in turn can be shown to imply the following
results:

ωT = ωR = ωI , (9)

kI , kR and kT lie in the same plane (the so-called “plane of incidence”), (10)

θR = θI (the law of reflection), (11)

n1 sin θI = n2 sin θT (the law of refraction, also known as Snell’s law). (12)

The angles θI , θR, and θT here are shown in the figure below, which also shows the directions
of the wavevectors (the orientation of the x and y axes in the xy plane have been chosen so
that the wavevectors have no y component, and we also made the assumption n1 < n2 in the
figure).

𝑥𝑥

𝑦𝑦
𝑧𝑧

medium 1 medium 2

interface (𝑧𝑧 = 0)𝒌𝒌𝐼𝐼

𝒌𝒌𝑹𝑹 𝒌𝒌𝑻𝑻
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So far, no use has been made of the direction of ẼI . Now, assume that ẼI points along the
y axis. Then it can be shown that also ẼR and ẼT point along the y axis. In other words,
the vector Ẽ0 in Eq. (3) for the respective waves can be written

Ẽ0I = Ẽ0I ŷ, (13)

Ẽ0R = Ẽ0R ŷ, (14)

Ẽ0T = Ẽ0T ŷ. (15)

b) Use the boundary conditions (5)-(8) to derive the two equations

Ẽ0I + Ẽ0R = Ẽ0T , (16)

Ẽ0I − Ẽ0R = αβ Ẽ0T , (17)

where α = cos θT / cos θI and β = n2/n1. (Remark: It turns out that (6) and (7) lead
to the same equation, so only one of these boundary conditions have to be considered.)

c) Assume that n1 < n2. Determine the phase between the reflected wave and the incident
wave as a function of θI for 0 ≤ θI < π/2, and whether there are any values of θI for
which the reflected wave vanishes.

Problem 3.

𝑧 

𝑞(𝑡) 

𝑑/2 

−𝑞(𝑡) 

𝑑/2 

𝑦 

𝒓 

𝜃 

Two tiny metal spheres are separated by a distance d along the z axis (see the figure above).
They are connected by an electrically neutral wire, through which a current with angular
frequency ω is driven, so that at time t, the charge on the upper sphere is q(t) and the charge
on the lower sphere is −q(t), where q(t) = q0 cos(ωt). We introduce complex notation by
writing q(t) = Re q̃(t) with q̃(t) = q0 e

−iωt etc. The current density is given by

j̃(r, t) = ẑ
dq̃(t)

dt
δ(x)δ(y)Θ(d/2− |z|) (18)

where Θ is the Heaviside step function.
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a) 1. Treating the metal spheres as points, write down an expression for the charge den-
sity ρ̃(r, t).

2. Make independent calculations of the following two quantities: ∂ρ̃
∂t and ∇ · j̃. Give

a physical interpretation of the result.

In the following we will be interested in the fields that contribute to radiation, denoted by
Erad and Brad. This means that in your calculations below you may assume that d ≪ r and
c/ω ≪ r, where r is the radial coordinate of the point r = (r, θ, ϕ). (Note that at this stage
you should not make any assumptions about the relative magnitude of d and c/ω.) It will be
convenient to introduce the wavenumber k = ω/c.

b) We will first consider the potentials Ṽ (r, t) and Ã(r, t). It can be shown (you are not
asked to show it) that the vector potential

Ã(r, t) ≈ − icq0µ0

2π

sin
(
kd
2 cos θ

)
cos θ

exp(i(kr − ωt))

r
ẑ. (19)

Find the corresponding expression for the scalar potential Ṽ (r, t).

c) It can be shown (you are not asked to show it) that

Ẽrad(r, t) = − q0k

2πϵ0
tan θ sin

(
kd

2
cos θ

)
exp(i(kr − ωt))

r
θ̂. (20)

Find B̃rad(r, t) (preferably by a calculation not making use of (20)). Compare the ex-
pressions for Ẽrad and B̃rad; are their similarities and differences as you would have
expected?

d) Determine the angular dependence (i.e. the dependence on the angles θ and ϕ) of the
resulting radiation pattern, as contained e.g. in the Poynting vector S. How does this
dependence simplify when kd ≪ 1? Comment on this simplified dependence.
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Formulas

Some formulas that you may or may not need (you should know the meaning of the symbols
and possible limitations of validity):

Tij = ϵ0

(
EiEj −

1

2
δijE

2

)
+

1

µ0

(
BiBj −

1

2
δijB

2

)
(21)

∇2f =
1

v2
∂2f

∂t2
(22)

d

du
Θ(u) = δ(u) (23)

V (r, t) =
1

4πϵ0

∫
d3r′

ρ(r′, tret)

|r − r′|
(24)

A(r, t) =
µ0

4π

∫
d3r′

j(r′, tret)

|r − r′|
(25)
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