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NTNU Institutt for fysikk

Contact during the exam:
Associate Professor Jon Andreas Støvneng replacing Professor Arne Brataas during the
exam
Telephone: 45 45 55 33

Exam in TFY4240 Electromagnetic Theory
August 9, 2024
09:00–13:00

Allowed help: Alternativ C
A permitted basic calculator and a mathematical formula book (Rottmann or
equivalent).

This problem set consists of 6 pages.

This exam consists of 4 problems, each containing several subproblems. There are in total
10 subproblems. Each subproblem (1a-1b-...) will be given equal weight in the grading.

The problems are given in English only. Do not hesitate to ask if you have any language
problems related to the exam set. For your answers, you are free to use either English or
Norwegian.

Some formulas are given in the appendix on the pages following the last problem.

Good luck!
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Problem 1.

a) We consider the system shown in Fig. 1. The metals are grounded, and the potential

Metal, V=0

Metal, V=0

y=a

y=-b

y=0

y

x

Figure 1: A sheet of surface charge at y = 0 is between two grounded metal conductors
at y = a and y = −b. Although not shown, the system is supposed to be infinitely
homogenous in the x and z directions. At y = 0, there is a surface charge density σ(x, t)
that may depend on the spatial coordinate x and the time t..

is V = 0 therein. Between the metals, there is a homogenous surface charge density
σ at y = 0. Above the surface charge density, when 0 < y < a, the dielectric constant
is ϵ1. Below the surface charge density, when 0 > y > −b, the dielectric constant is
ϵ2.

We assume the surface charge density is static and varies as σ(x) = σ0 cos kx.

Introduce the scalar potential V , solve the equation for V , and determine the elec-
trostatic electric field E = −∇V between the metals. Note that the electric field
may be inhomogeneous.

b) We consider a material that is linear and isotropic.

The Poynting vector S and the electromagnetic energy density u are determined by

S = E ×H (1)

u =
1

2
(E ·D +B ·H) . (2)

Show that

∂u

∂t
+E · J +∇ · S = 0 . (3)
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Explain what this equation means and what the three terms on the left-hand side
describe.

Problem 2.
We consider vacuum. In the initial reference frame F1, the electric fieldE and the magnetic
induction B satisfy the wave equation[

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2
t

]
E(r, t) = 0 , (4)[

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2
t

]
B(r, t) = 0 . (5)

The electric field E and the magnetic induction B are also related via Faraday‘s law (23).
We consider another frame of reference F2 with spatial coordinate R = (X, Y, Z) and
temporal coordinate τ that is related to the original reference frame with spatial coordinate
r = (x, y, z) and temporal coordinate t by the Lorentz transformation

τ = γ
(
t− vx/c2

)
, (6)

X = γ (x− vt) , (7)

Y = y , (8)

Z = z , (9)

where

γ =
1√

1− (v/c)2
(10)

is the Lorentz factor. In other words, the initial reference frame F1 is moving with a
velocity v along the x direction with respect to the other reference frame F2. We also have
the inverse relationship

t = γ
(
τ + vX/c2

)
, (11)

x = γ (X + vτ) , (12)

y = Y , (13)

z = Z , (14)

a) What are the wave equations for the electric field E and the magnetic induction B
in terms of the spatial coordinate R and temporal coordinate τ?

b) Using complex notation, we consider a plane wave

E(x, y, z, t) = E0ŷe
i(kx−ωt) . (15)

Compute the frequency Ω a person in reference F2 will observe in terms of the
frequency ω in reference F1, the velocity v, and the velocity of light c.
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Problem 3.
We consider two materials, 1 and 2, and the interface between them.

a) Derive the boundary conditions (27) and (28).

b) Derive the boundary conditions (29) and (30).

Problem 4.

a) We consider a microwave cavity as shown in Fig. 2. The cavity dimensions are a
along the x direction, b along the y direction, and c along the z direction. Metallic
plates enclose the cavity.

a

b

c

Figure 2: A microwave cavity. Metallic plates enclose the volume abc.

In the Lorentz gauge, and in the absence of free charges, the scalar potential V fulfills
the wave equation (

∇2 − 1

c2
∂2
t

)
V (x, y, z) = 0 . (16)

Choose the coordinate system so that one metal plate is located at x = 0 and another
at x = a. Similarly, there are metal plates located at y = 0, y = b, z = 0, and z = c.
What possible modes for the scalar potential V can exist inside the cavity?

b) We consider a point charge q that is located at position R = (0, a, 0) above a grounded
metal plate at y = 0 as schematically shown in Fig. 3.

Compute the electric field as a function of position for all locations above the plane.
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Metal

x

y

q

a

Figure 3: A point charge at (0, a, 0) is above the metal plane at y = 0. The metal plane is
infinite in the x and z directions. We show here only the projection in the x-y plane.

c) An electron moves with constant velocity v in a circle of radius R so that its position
at time t is

re(t) = R

(
cos

vt

R
x̂+ sin

vt

R
ŷ

)
, (17)

where x̂ is a unit vector along the x direction and ŷ is a unit vector along the y
direction.

What is the charge density ρ(r, t) and the charge current density J(r, t)? Demon-
strate that there is charge conservation,

∂ρ

∂t
+∇ · J = 0. (18)

d) In the Lorentz gauge, the time-dependent scalar potential V and vector potential A
in vacuum are

V (r, t) =
1

4πϵ0

∫
d3R

ρ(R, tr)

|R− r|
, (19)

A(r, t) =
µ0

4π

∫
d3R

J(R, tr)

|R− r|
. (20)

Explain what the retarded time tr is and why we must use this time tr in these
equations.
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A Maxwell‘s Equations

Maxwell‘s equation in vacuum for the electric field E, the displacement field D, the mag-
netic induction B, and the magnetic field H are

∇ ·D = ρf , (21)

∇ ·B = 0 , (22)

∇×E = −∂B

∂t
, (23)

∇×H = Jf +
∂D

∂t
, (24)

in terms of the free charge density ρf and the free charge current density Jf .

B Constitute Relations

In linear and isotropic media, we have

D = ϵE , (25)

B = µH , (26)

where ϵ is the dielectric constant and µ is the magnetic permeability.

C Boundary Conditions for Electromagnetic Fields

At interfaces between material 1 and material 2, the boundary conditions are

ên × (E1 −E2) = 0 , (27)

ên × (H1 −H2) = Ks , (28)

ên · (D1 −D2) = σS , (29)

ên · (B1 −B2) = 0 , (30)

where ên is a unit vector normal to the interface, σS is the surface charge density, and Ks

is the surface charge current density.

D Spherical Coordinates

In spherical coordinates r, θ, and ϕ, the gradient is

∇t = r̂
∂t

∂r
+ θ̂

1

r

∂t

∂θ
+ ϕ̂

1

r sin θ

∂t

∂ϕ
. (31)



Exam in TFY4240 Electromagnetic Theory, August 9, 2024 Page 6 of 6

The divergence is

∇ · v =
1

r2
∂

∂r

(
r2vr

)
+

1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂vϕ
∂ϕ

. (32)

The Laplacian is

∇2 =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
. (33)

E Products of matrices

A · (B ×C) = B · (C ×A) = C · (A×B) , (34)

A× (B ×C) = B (A ·C)−C (A ·B) . (35)

F Integral Theorems

The divergence theorem is ∫
d3r∇ ·A =

∮
A · dS . (36)

Stoke‘s theorem (or the curl theorem) is∫
(∇×A) · dS =

∮
A · dl . (37)

G Some Useful Results

We define R = r − r1, R = |R|, and R̂ = R/R. Then

∇ · R̂

R2
= 4πδ(R) , (38)

∇ 1

R
= − R̂

R2
, (39)

∇2 1

R
= −4πδ(R) . (40)


