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NTNU - Institutt for fysikk

Contact during the exam:
Sondre Duna Lundemo
Telephone: +47 9651 7904

Exam in TFY4240 - Electromagnetic theory
May 22, 2025
09:00-13:00

Permitted examination support material: Alternative C:

A permitted basic calculator and a mathematical formula book (K.Rottmann
or equivalent).

This problem set consists of 11 pages. The four last pages constitute a formula sheet
from Griffiths’ Electrodynamics (fourth edition).

The number of points available for each problem is indicated next to the title. The
relative weighting of the problems can be subject to change, but it nevertheless gives
you an idea of how much time I estimate you will spend on each problem.

If a question is unclear/vague, make your own assumptions and specify in your answers
the premises you have made.

The problems are given in English only. You are free to use either English or Norwegian
for your answers.

Good luck!

This problem set was developed by Sondre Duna Lundemo.
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Problem 1 - Short questions (20 points)

The sub-problems in this problem deal mostly with different systems and can be an-
swered independently of each other. The questions should only require short derivations
or short explanations.

A point dipole can be constructed in the following way: Consider two point charges, one
of charge q and the other of charge −q, separated by some vector d (from −q to q). The
point dipole is obtained by letting |d| → 0, in such a way that the product q|d| is finite.

(a) Show that a point dipole situated at r = r0 is described by the charge density

ρ(r) = −p ·∇δ(r− r0), (1)

where p ··= qd. Hint: Use a Taylor expansion.

(b) Use the charge density in Eq. (1) to derive the scalar potential V (r) of the point
dipole.

In the absence of sources, the electromagnetic momentum density g ··= D × B can be
shown to satisfy the equation

∂tg −∇ ·
↔
T = 0, (2)

where
↔
T ··= Tijx̂i ⊗ x̂j denotes the Maxwell stress tensor (summation convention used).

(c) Explain the physical meaning of Eq. (2).

Suppose we describe a metal as a gas of mobile electrons flowing through the crystal
lattice of the positive ions. On macroscopic scales, the metal is overall charge neutral.
When we place a fixed charge Q into this system, say at r0, the electron charge density
ρ(r) of the metal is altered. A simple model for the scalar potential in the metal due to
the charge Q is given by (

∆− 1

λ2

)
V (r) = −Q

ε0
δ(r− r0), (3)

where λ is a constant called the Debye screening length, and ∆ ··= ∇2 is the Laplacian.
You are given that the Green’s function GŶ (r− r′) of the operator Ŷ ··= ∆− k2 is

GŶ (r− r′) = − 1

4π|r− r′|
exp (−k|r− r′|) . (4)

We use the convention that a Green’s function GŶ satisfies Ŷ GŶ (r− r′) = δ(r− r′).

(d) Write the solution to Eq. (3) using the Green’s function GŶ . Give a brief physical
interpretation of the solution.
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Problem 2 - Radiation of a point charge (30 points)

In the Lorentz gauge, the scalar and vector potentials satisfy the equations
V = ρ/ε0 and A = µ0J, (5)

where ··= c−2∂2
t −∆, is the wave operator. Recall that the retarded Green’s function

of the wave operator (satisfying G(r− r′; t− t′) = δ(r− r′)δ(t− t′)) is given by

G(r− r′; t− t′) =
1

4π|r− r′|
δ

(
t− t′ − |r− r′|

c

)
. (6)

Consider a point particle with charge q moving along a trajectory rq(t).

(a) What is ρ(r, t) and J(r, t) for the moving point charge?

Using the Green’s function, we showed in the lectures that (you are not asked to derive
this)

V (r, t) =
q

4πε0

[
1

R−R · vq/c

]
and A(r, t) =

µ0q

4π

[
vq

R−R · vq/c

]
, (7)

where R(t) ··= r− rq(t) and vq(t) ··= ṙq(t).

(b) What is the equation that determines the time at which the quantities in the square
brackets of Eq. (7) are evaluated?

Why are these quantities not evaluated at time t?

(c) Show that

V (r, t) ' q

4πε0r
(1 + r̂ · vq(t− r/c)/c) and A(r, t) ' qµ0

4πr
vq(t− r/c), (8)

in the far-field and non-relativistic limit. State how and where these approximations
are used at each step in the derivation.

Hint: You may find the following relations useful:
√
1 + x ' 1 +

x

2
and 1

1 + x
' 1− x for x� 1. (9)

Suppose that you are observing the moving point charge from a large distance r � rq(t)
and you are interested in the electromagnetic radiation from the particle.

(d) Explain what is meant by the radiation fields of the particle.

(e) It is well known that accelerated charges emit electromagnetic radiation. Can this
be qualitatively seen from the expressions in Eq. (8)? (You are not required to
compute E and B explicitly.)
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Problem 3 - Cylindrical permanent magnet (30 points)

Consider a cylinder with radius a and length L. The cylinder has permanent and uniform
magnetization M0 parallel to its axis, and Jf = 0 everywhere. That is,

M(r) =

{
M0ẑ r ∈ cylinder
0 r /∈ cylinder

. (10)

Place the coordinate system so that the cylinder extends from −L/2 ≤ z ≤ L/2, 0 ≤
r ≤ a and 0 ≤ φ < 2π (see Fig. 1).

Figure 1: The figure shows the placement of the coordinate system with respect to the
cylinder. The origin of the coordinate system lies at the centre of the cylinder.

(a) Argue that H in this case can be derived from a scalar potential ϕM(r) such that
H(r) = −∇ϕM(r). Show that ϕM(r) satisfies the Poisson equation

∆ϕM = −ρM , (11)

where ρM(r) = −∇ ·M(r).

At this point, it might be helpful to recall that the mathematical structure of the equa-
tions is exactly the same as those of electric polarization in the absence of free charge,
which can be seen by doing the replacements

M(r)←→ P(r) and ϕM(r)←→ ε0V (r). (12)

(b) Show that ϕM(r) can be determined from the expression

ϕM(r) =
1

4π

ˆ
S

da′ n̂(r
′) ·M(r′)

|r− r′|
, (13)

where S is the surface of the cylinder, and n̂ is its outward normal.

Hint: You can either make use of the analogy in Eq. (12) directly, or note that M
in Eq. (10) is discontinuous across the surface of the cylinder. This means that its
divergence ∇ ·M is singular on the surface.
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(c) Compute ϕM(z) and use it to determine the magnetic fields H and B along the
z-axis, inside and outside the cylinder. That is, compute explicit expressions for
H(z) and B(z) from ϕM(z).

NB: you should not find the fields as functions of the polar angle φ and the radius
r in the xy-plane.

The z-components of the fields Hz(z) and Bz(z) are plotted in Fig. 2.

(d) Which of these (left or right) plots shows Bz(z) and which shows Hz(z)? Comment
on the difference between H and B.
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Figure 2: Plot of Hz(z) and Bz(z) in non-specified order with a = 0.2L.
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Problem 4 - Gauge structure of electrodynamics (20 points)

In this course we have seen that the Maxwell theory has a gauge structure.

(a) What is a gauge transformation? Write down how the scalar potential V (r, t) and
the vector potential A(r, t) transform under such a transformation.

In class, we saw that two of the Maxwell equations in covariant form

∂µF
µν = µ0J

ν (14)

followed from using the principle of least action with the Lagrangian density

L = − 1

4µ0

FµνF
µν , (15)

and the action
S[A] =

1

c

ˆ
d3r

ˆ
dt (L − AµJ

µ) . (16)

We are using the metric with signature g = diag(1,−1,−1,−1) and we have defined

Fµν ··= ∂µAν − ∂νAµ, (17)

and
∂µ ··= (∂t/c,∇) Aµ ··= (V /c,A) and Jµ ··= (cρ,J). (18)

(b) Show that Fµν is gauge-invariant.

This implies that L is a gauge-invariant quantity. However, the action shown in Eq. (16)
does not look gauge-invariant, because of the term where Aµ appears as itself and not
via the field tensor.

(c) Derive the condition that the current Jµ has to satisfy for S[A] in Eq. (16) to be
gauge-invariant. Give a physical interpretation of this condition.

Hint: You can ignore boundary terms.

For some special two-dimensional materials (two spatial dimensions and one temporal
dimension), the electromagnetic response is drastically different, and the Lagrangian
density is given by

L̃ =
k

4π
εµνρAµ∂νAρ. (19)

In this equation εµνρ is the Levi-Civita symbol, and µ, ν, ρ are indices that take values
in {0, 1, 2}. Its definition here is entirely analogous to the Levi-Civita symbol in three
spatial dimensions: it is cyclic and completely antisymmetric in exchanging any pair of
indices, and ε012 = 1. The coefficient k/(4π) is a real number.
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In two spatial dimensions, the electric field E is a two-component vector defined as usual,
i.e., E = −∇V − ∂tA, while the magnetic field is a scalar B = ∂xAy − ∂yAx. In two
spatial dimensions, the electromagnetic field tensor is still given by

Fµν = ∂µAν − ∂νAµ, (20)

and we use the metric g = diag(1,−1,−1).

(d) Is L̃ in Eq. (19) invariant under gauge transformations?

Hint: It might be helpful to use that

εµνρ∂νAρ =
1

2
εµνρFνρ. (21)

(e) Show that the action
S̃[A] ··=

1

c

ˆ
d2r

ˆ
dtL̃, (22)

is invariant under gauge transformations provided that we can ignore boundary
terms.
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VECTOR DERIVATIVES

Cartesian. dl = dx x̂ + dy ŷ + dz ẑ; dτ = dx dy dz

Gradient : ∇t = ∂t

∂x
x̂ + ∂t

∂y
ŷ + ∂t

∂z
ẑ

Divergence : ∇ · v = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

Curl : ∇ × v =
(

∂vz

∂y
− ∂vy

∂z

)
x̂ +

(
∂vx

∂z
− ∂vz

∂x

)
ŷ +

(
∂vy

∂x
− ∂vx

∂y

)
ẑ

Laplacian : ∇2t = ∂2t

∂x2
+ ∂2t

∂y2
+ ∂2t

∂z2

Spherical. dl = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂; dτ = r2 sin θ dr dθ dφ

Gradient : ∇t = ∂t

∂r
r̂ + 1

r

∂t

∂θ
θ̂ + 1

r sin θ

∂t

∂φ
φ̂

Divergence : ∇ · v = 1

r2

∂

∂r
(r2vr ) + 1

r sin θ

∂

∂θ
(sin θ vθ ) + 1

r sin θ

∂vφ

∂φ

Curl : ∇ × v = 1

r sin θ

[
∂

∂θ
(sin θ vφ) − ∂vθ

∂φ

]
r̂

+ 1

r

[
1

sin θ

∂vr

∂φ
− ∂

∂r
(rvφ)

]
θ̂ + 1

r

[
∂

∂r
(rvθ ) − ∂vr

∂θ

]
φ̂

Laplacian : ∇2t = 1

r2

∂

∂r

(
r2 ∂t

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂t

∂θ

)
+ 1

r2 sin2 θ

∂2t

∂φ2

Cylindrical. dl = ds ŝ + s dφ φ̂ + dz ẑ; dτ = s ds dφ dz

Gradient : ∇t = ∂t

∂s
ŝ + 1

s

∂t

∂φ
φ̂ + ∂t

∂z
ẑ

Divergence : ∇ · v = 1

s

∂

∂s
(svs) + 1

s

∂vφ

∂φ
+ ∂vz

∂z

Curl : ∇ × v =
[

1

s

∂vz

∂φ
− ∂vφ

∂z

]
ŝ +

[
∂vs

∂z
− ∂vz

∂s

]
φ̂ + 1

s

[
∂

∂s
(svφ)− ∂vs

∂φ

]
ẑ

Laplacian : ∇2t = 1

s

∂

∂s

(
s
∂t

∂s

)
+ 1

s2

∂2t

∂φ2
+ ∂2t

∂z2



VECTOR IDENTITIES

Triple Products

(1) A · (B × C) = B · (C × A) = C · (A × B)

(2) A × (B × C) = B(A · C) − C(A · B)

Product Rules

(3) ∇( f g) = f (∇g) + g(∇ f )

(4) ∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A

(5) ∇ · ( f A) = f (∇ · A) + A · (∇ f )

(6) ∇ · (A × B) = B · (∇ × A) − A · (∇ × B)

(7) ∇ × ( f A) = f (∇ × A) − A × (∇ f )

(8) ∇ × (A × B) = (B · ∇)A − (A · ∇)B + A(∇ · B) − B(∇ · A)

Second Derivatives

(9) ∇ · (∇ × A) = 0

(10) ∇ × (∇ f ) = 0

(11) ∇ × (∇ × A) = ∇(∇ · A) − ∇2A

FUNDAMENTAL THEOREMS

Gradient Theorem : ∫ b
a (∇ f ) · dl = f (b) − f (a)

Divergence Theorem : ∫
(∇ · A) dτ = ∮

A · da

Curl Theorem : ∫
(∇ × A) · da = ∮

A · dl



BASIC EQUATIONS OF ELECTRODYNAMICS

Maxwell’s Equations

In general : In matter :
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · E = 1

ε0
ρ

∇ × E = −∂B
∂t

∇ · B = 0

∇ × B = μ0J + μ0ε0
∂E
∂t

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇ · D = ρ f

∇ × E = −∂B
∂t

∇ · B = 0

∇ × H = J f + ∂D
∂t

Auxiliary Fields

Definitions : Linear media :
⎧⎪⎨
⎪⎩

D = ε0E + P

H = 1

μ0
B − M

⎧⎪⎨
⎪⎩

P = ε0χeE, D = εE

M = χmH, H = 1

μ
B

Potentials

E = −∇V − ∂A
∂t

, B = ∇ × A

Lorentz force law

F = q(E + v × B)

Energy, Momentum, and Power

Energy : U = 1

2

∫ (
ε0 E2 + 1

μ0
B2

)
dτ

Momentum : P = ε0
∫
(E × B) dτ

Poynting vector : S = 1

μ0
(E × B)

Larmor formula : P = μ0

6πc
q2a2



FUNDAMENTAL CONSTANTS

ε0 = 8.85 × 10−12 C2/Nm2 (permittivity of free space)

μ0 = 4π × 10−7 N/A2 (permeability of free space)

c = 3.00 × 108 m/s (speed of light)

e = 1.60 × 10−19 C (charge of the electron)

m = 9.11 × 10−31 kg (mass of the electron)

SPHERICAL AND CYLINDRICAL COORDINATES

Spherical⎧⎨
⎩

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

⎧⎪⎨
⎪⎩

x̂ = sin θ cos φ r̂ + cos θ cos φ θ̂ − sin φ φ̂

ŷ = sin θ sin φ r̂ + cos θ sin φ θ̂ + cos φ φ̂

ẑ = cos θ r̂ − sin θ θ̂

⎧⎪⎨
⎪⎩

r = √
x2 + y2 + z2

θ = tan−1
(√

x2 + y2/z
)

φ = tan−1(y/x)

⎧⎨
⎩

r̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ
θ̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ
φ̂ = − sin φ x̂ + cos φ ŷ

Cylindrical⎧⎨
⎩

x = s cos φ

y = s sin φ

z = z

⎧⎨
⎩

x̂ = cos φ ŝ − sin φ φ̂

ŷ = sin φ ŝ + cos φ φ̂

ẑ = ẑ

⎧⎨
⎩

s = √
x2 + y2

φ = tan−1(y/x)

z = z

⎧⎨
⎩

ŝ = cos φ x̂ + sin φ ŷ
φ̂ = − sin φ x̂ + cos φ ŷ
ẑ = ẑ


