TFY4240 Electromagnetic theory: Solution to exam, spring 2019

Problem 1

In this problem we will encounter equations on the form

Z fePu(cos ) = Zgng(cos 0), (1)

=0 =0

where f; and g, are coefficients. Eq. (1) implies that!
fe = ge. (2)

(a) Let us first consider the potential outside the shell (r > R), which we call V°"*. As there is no charge
there, V°U¢ obeys the Laplace equation. Since furthermore the potential on the shell is independent of
the azimuthal angle ¢, the same will be true for V°U" which therefore may be expanded as (cf. Eq. (1)
in the set of specific formulas)
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Since there is no charge at infinity (i.e. for 7 — 00), we may set V°"* = 0 there. This gives A?"* = 0 for all
¢. Furthermore, the condition that V is a continuous function gives for r = R that VU (R, 0) = V(R, 0),
ie.
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which by (1)-(2) implies Byt = VR, Thus
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Let us next consider the potential inside the shell (r < R), which we call Vi". By the same arguments
as for Vo we may expand V'™ as
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As there is no charge at the origin (r = 0), V" cannot diverge as r — 0. This implies Bi* = 0 for all £.
Furthermore, the condition that V' is continuous gives for r = R that V*(R,0) = V(R,0), i.e
Z AP R Py(cos ) = Z VePy(cos ), (7)

=0 £=0

which implies A" = V;/R’. Thus

Vin(r, ) ZVg( ) Py(cosb). (8)

(b) Using Eq. (4) in the set of specific formulas (which may be derived from Gauss’s law), and that the

1You could assume (2) without proof. To prove it, multiply (1) by Py (cosf)sin@ and integrate 6 from 0 to 7, change
variables to z = cos 6, and use Eq. (3) in the specific formula set.



spherical shape of the shell implies 7 = 7 , i.e. 9/0On = 8/0r, the surface charge density is
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(¢) 4+ (d) The problem text asks for the electric potential produced by the polarization P. I will call
this potential Vp, to emphasize that it is not equal to the total electric potential (which would also
include the potential of the external field that creates P in the first place). The associated electric field
is Ep = —VVP.

In general, Vp(7) is the sum of two contributions: one from the volume bound charge density p, = —V- P,
and one from the surface bound charge density o, = P - n. These two contributions may in principle be
found from the same integration formulas that give the potential produced by any electrostatic volume
or surface charge density, i.e.
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gives the contribution from the surface bound charge. (15)

Here the integrals are over the volume €2 (more precisely, over the interior of the volume, excluding any
surface contribution) and over the surface a, respectively, of the dielectric body. In our problem, since
P is uniform, p, = —V - P = 0. So the only contribution to Vp comes from the surface bound charge.
Picking the z axis in the direction of P and the origin at the center of the dielectric sphere, we have

op,=P-n=Pz- -+ = Pcosf. (16)

The fact that o, is independent of ¢ means that we may make use of the mathematical similarities
between this problem of finding Vp and the problem of finding V' and o in (a) and (b) (this method is
easier than trying to directly evaluate the integral in (15)). The result (13) may be written

o= Z oePy(cosb), (17)
=0
where the coefficient oy is
oy = %W(2E+1). (18)
On the other hand, using that P;(cosf) = cosf, Eq. (16) may be written
op = PPy (cos?). (19)
Equating (19) and (17) implies
gy = Pé&l. (20)

Next, we find V4 from (18):

_R o R P PR
_60264’1_60264’1&1_360

Vi 01 (21)



To find V8" we insert (21) in (5), which gives

0o £+1 3
PR R PR? cos
Vot = E —4 — Py(cosh) = —————. 22
! =g 3¢o o (r) elcos6) 3eor? (22)
By introducing the electric dipole moment of the dielectric sphere, p = fQ P = 4“31%3 P, we can rewrite
Vot as
p-T
vt = 23
P dmegr?’ (23)
which we recognize as an electric dipole potential. Consequently, E%" is an electric dipole field:
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Note that for an electric dipole, the potential decays like 1/r? and the field decays like 1/73.
To find VI we insert (21) in (8), which gives
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We see that E' is uniform and points in the direction opposite to P.

Remarks about (c) and (d):

e Unfortunately some students assumed that the dielectric was simple (i.e. linear and isotropic).
Note that the problem text did not say that the dielectric was simple, nor did it introduce any
parameters characteristic of a simple dielectric, such as x, & (= 1+ x), or € (= ¢yk). Furthermore,
the equation P = ¢y x E valid for a simple dielectric was not in the set of specific formulas.

e Even if the dielectric had been simple, note that the equation P = ¢gx E relates the polarization
P to the total electric field E inside a simple dielectric, not the electric field E¥% produced by the
polarization. The two fields are related by E = E,pplicd + Ep, where Eyppieq is the external field
that the experimentalist applies. Note in particular that E and E} point in opposite directions.

Problem 2

(a) 1. To find the potential in the region z > 0 we replace the conductor with an ”image” point charge
¢ at the point (x,y,z) = (0,0, —d). The potential is then

/

q . q
VIZ+ 2+ (z—d)?2 /22 +y?+ (z +d)?

1

" drweg

Vi, y,z) (27)

To find ¢ we use the boundary condition on V', which is that V' = 0 for z = 0 since the conductor is

grounded. Thus V(z,y,0) = m(q + ¢') = 0, which gives ¢’ = —q.

2. The force Fy on q is

F, = qE(0,0,d)=—qVV (28)
('T7yaz)=(0107d)
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Here, the first term on the RHS is due to the field of the charge q itself. This ”self-force” is zero,? leaving
only the contribution from the second term due to the image charge —¢:
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This result could have been found more easily by noting that F, is given by force between ¢ and the
image charge —q, which is of Coulomb form. The direction of the force is down, which makes sense,
since physically the force is due to surface charge on the conductor which arises due to attraction to ¢
and thus has the opposite sign of q.

(b) 1. The surface charge density is (obtained e.g. by adapting Eq. (4) in the formula set, or by deriving
it from Gauss’s law)

(32)
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Here Vibove is the V(z,y, z) that we found in (a), while Vieow is the potential in the conductor, which
is 0. Thus the second term on the RHS vanishes, leaving
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Note that this expression for the surface charge density o(x,y) has the following properties, all of which
are as expected: (i) It has the opposite sign of ¢, (ii) it is radially symmetric in the zy plane, i.e. its
dependence on z and y can be expressed entirely in terms of the radial coordinate s = y/x2 + y2 in the
xy plane, (iii) it has dimensions charge/(distance squared), i.e. charge/area.

2. Let the total surface charge density be ). The easiest way to find @ is by considering the monopole
term in the multipole expansion of V(z,y, z) for large r = \/22 + y2 + 22 (with z > 0 so we are above
the conductor). The monopole term Qio/4mepr vanishes, since from the expression for V(x,y, z), the
total charge Qior = ¢+ (—¢) = 0. In the physical system (by which I mean the original system consisting
of the charge ¢ and the conductor, in contrast to the fictitious system involving the image charge), any
charge in addition to the point charge ¢ must be located on the surface of the conductor. Thus we must
have Qo = g + @Q, which gives Q = —q.

Alternatively, @ may be found by integrating o(z,y) over the xy plane:

_ [~ = _qd [~ > 1

Because of the radial symmetry of the integrand, we switch to polar coordinates s and ¢. This gives
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2Some additional remarks on the self-force (not needed for solving the exam problem): Attempting to evaluate it directly
fails due to the vanishing (2 — d). But one can use a more indirect way, by averaging the self-field over a sphere of radius
R centered on the charge, and then decreasing R towards the radius of the particle (which for a true point particle is 0,
which can lead to subtleties on its own). Since the self-field is of Coulomb form, its magnitude is the same at all points on
the sphere, whereas its direction is radial. Thus the average of the self-field over the sphere vanishes, giving zero self-force.
Interestingly, the self-force wouldn’t vanish for an accelerated particle. This is related to the so-called radiation reaction,
which we didn’t have time to cover in this year’s course.



3. On the surface of the conductor, an infinitesimal area element da = dxdy that has charge o(z,y)da
and is located at » = (x,y, 0), acts on the charge ¢ at 7, = (0,0, d) with a force dF, given by Coulomb’s

law:
qo(z,y)dedy o qo(x,y)drdy
dF, = R = R 38
1 4dmeq R? 4dmegR3 (38)

where I have here defined R=r,—r = —z& —yy+dz, R = |R| = /22 + y2 + d?, and R =R/R. The
total force is found by integrating over the whole zy plane:

qg [ > o(x,y) A
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Since o(z,y) is an even function of x (y), the term proportional to & (g) involves an integrand that is
odd in x (y), so its integral vanishes. Therefore only the term proportional to 2 survives, giving

,oqd [ > o(z,y)
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(c) In this equation, 2 is an arbitrary volume and a is the surface of .

e The first term: F is the total electromagnetic force (i.e. Lorentz force) on all charges inside .

e The second term: This is a surface integral over a, where ? is the Maxwell stress tensor with
components T;;, with the interpretation that — T is the momentum flux density (momentum cur-
rent density); more specifically, —T;; is the momentum in the ¢ direction crossing a surface oriented
in the j direction, per unit area, per unit time. The second term can therefore be interpreted
as momentum current into 2. Alternatively, can be given a force-per-unit-area interpretation,
with the diagonal components (i = j) being pressures and the off-diagonal components (i # j)
being shears.

e The third term: Here S/c? is the momentum density ggm of the electromagnetic field, where S
is the Poynting vector. The volume integral thus gives the total momentum pgy stored in the
electromagnetic fields inside €2. The third term thus subtracts the time rate of change of pg.

(The equation is closely connected to conservation of momentum. With F = dpgi‘te“‘ﬂ where Pmech 1S

the total (mechanical) momentum of the charges inside {2, the equation expresses that the time rate of
change of the total momentum ppech + PEM in  equals the momentum current flowing into €2.)

(d) In this problem the third term in the equation disappears. This can be argued either because B = 0
in this problem, so S = 0, or because the problem is static, so d/dt gives 0. We are thus left with

Fq:jéa?-da (41)

where a is taken as the surface of the "upper half-sphere” of radius R (R — o0), with the center of the
sphere infinitesimally above (0,0,0), so that the only charge inside the volume € enclosed by a is the
charge gq. The surface area a consists of the curved part of the half-sphere (the "northern hemisphere”)
and the ”equatorial disk” in the xy plane. Since static fields fall off at least as fast as 1/R?, and since
T;; is quadratic in the fields, T . da will fall off at least as fast as (1/R?*)2R? = 1/R? on the curved part
of the surface, which will thus not contribute for R — oo. Thus we are left with the contribution from
the equatorial disk, which in the limit R — oo becomes the whole zy plane. Since da = m da should

point out of €, the unit vector n = —2. Thus (using Einstein’s summation convention)
? -da = (Tl]él ® é]) . (—daﬁ) = —dCLTi]’éi(éj . 2) = —d&Tijéi(sz = —daTizéi
= —da(Tp.x+Ty.y+T:.2). (42)

Since FE just outside a conductor has no components parallel to the conductor surface, £, = E, = 0, so
T.e = €E.E, =0and T, = ¢gF,Fy = 0. This leaves the contribution from

72 Lpe) oo qd c_ ¢d* (43)
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where I used F, = o(z,y)/€eg. Thus
2d2 0 oo 1
F,= —2L/ dz / dy —5——s— . (44)

(Incidentally, we can be sure that this expression is correct if we notice that one arrives at the same
expression by inserting (34) into (40.) Using polar coordinates, the integral becomes

oo 1 _eagr 1 [ f 1 =
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Inserting this into (44) we arrive at the same result as in 2(a)2.
Problem 3

(a)e The factors d(z) and d(y) are zero for & # 0 and y # 0, respectively, consistent with the wire going
along the z axis. As j is a vector, it is thus directed along the z axis, which explains the factor 2.

e As the wire goes between the two the charges at z = +d/2, it should vanish for z > d/2 and
z < —d/2. This is taken care of by the Heaviside step function 0(d/2 — |z).

e By definition of a current density j, the surface integral fa J - da gives the current through the
(oriented) surface a. Taking a to be plane parallel to the zy plane, for a value of z between —d/2
and d/2, oriented in the +Z direction (i.e. the normal vector n in da = fdzdy is 1 = +2), the
integral gives the current in the upward direction:

/ dx/ dy 5(2)8(y) - Adz dy = (3 - ﬁ)fl‘t] +%. (46)

This agrees with the fact that the upper charge is ¢ and the lower charge is —q.

(b) Defining the ”complexified” version of g as ¢, with ¢ = Re(g) (and similarly for other quantities), we
can take G(t) = goe~**. This gives

i = 2 s@swe2 - |4 (47)
= WA/ ~ ). (48)

Thus, with t,et = ¢ — |r — 7’|/c being the retarded time, the complexified vector potential in the Lorenz
gauge is (cf. Eq. (7) in the set of specific formulas):

A(’r,t) _ /d3 /.7 7 tret) (49)
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Because of the Dirac delta functions §(z’) and 6(y’), doing the integrals over 2’ and y’ is easy. As these
integrations enforce ' = ¢y’ = 0, they reduce v’ to z’2. The remaining integration over z’ runs from —oo
to 400, but because the Heaviside step function is zero for |z| > d/2 and 1 for |z| < d/2, we may write

~( ret)0(2')3(y)O(d/2 — |2']) (50)

eXp[ iw(t —|r —7'|/c)]6(z")d(y)O(d/2 - |2']).  (51)
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Since |2/| < d/2 and d < r, it follows that |r — 2'2| &~ r. Making this approximation corresponds to
using just the leading term in the Taylor series expansion of |r — 2z’ 2| around 2z’ = 0. The integrand then
becomes independent of 2/, giving
—iw(t—r/c)

i . fogod e .
A(r,t) = — .
(r,t) W= . z (53)




Considering also the 1st order term in the Taylor expansion, we would get two types of corrections
in the integrand in (52) (as only the order of magnitude of the corrections matter in the following,
I don’t discuss their detailed form, such as Taylor series coefficients.) First, the factor 1/r would be
replaced by 2(1+0(d/r)) (here O means ”of the order of”). Thus the correction term goes like 1/r% and
therefore wouldn’t contribute to radiation, so we drop it. Second, the factor e™”/¢ would be replaced
by e (r+0(d)/e — giwr/cpiOwd/e) Gince by assumption d < ¢/w, i.e. wd/c < 1, we may approximate
e0wd/¢) ~ 1 4+ O(wd/c). Although the addition to 1 here would give a contribution to the radiation
fields, we drop it since it is a small correction (i.e. keeping just the term 1 gives the leading part of the

radiation fields). Thus we are left with (53). Taking the real part gives

_ wpogod sinjw(t —r/c)] 5
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(54)
(¢) To find Biaq we start from B,,qg = V X A;,q and throw away any terms that decay faster than 1/r.
We may in principle calculate the curl in any coordinate system we choose (cartesian, spherical, and
cylindrical being the relevant ones for us). For this calculation I will use cylindrical coordinates (s, ¢,
z). We see that A,.q only has a z component, which only depends on s and z (via r = v/s? + 22). Thus

_ a"41fad,z
0s
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ds Or r 47 Or r

Biaa(r,t) = b= : (55)
Using the product rule for differentiation, we only get a contribution to radiation from differentiating
the sine function with respect to r (the differentiation of 1/r gives an additional factor of 1/r). Also

note that s/r = cos(n/2 — 0) = sinf. Thus

2 Teo(f — .
~ w?iogod Sinec%[w(t r/c)]¢.

Braa(r.t) = 4dme r

(56)

(d) E\aq can be conveniently found from the 4th Maxwell equation, the Ampere-Maxwell law (as done
in the lectures). This law involves j, but this is not a problem, since we want to find E,.q far away
from the dipole, where j = 0 anyway. To calculate V X Biaq from (56) it is natural to use spherical
coordinates. This gives

8Erad 2 2 | A 1 a(SiH GBrad ¢) ~1 a(erd ¢)
="V X Byag = . : —6- : 57
ot cvx 4= rrsm@ 00 r or (57)
We drop the term proportional to 7 because it falls off like 1/r2. Thus
E.a 3 110qod infw(t — .
OF,aq _ W hodo sin(‘)sm[w( r/c)]e (58)
ot 4m T
Integrating this expression with respect to t for fixed r gives®
2 ogqod slw(t — .
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4 r
(e) Let me first use (56) and (59). It follows from these equations that
2 p0qod t— % pogqod t—
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s0 (i) |Brad|/|Erad| = 1/c. Furthermore, By,4 || c{) and E.q || 0. Therefore (ii) Braq L Eraq since dA) 16,
and (iii) Byad, Fraa L 7 since ¢,0 L 7.

Alternatively, one can use the expressions for FE,,q and B,q given in the problem text. We will also use
that for general vectors u and v, the cross product u X v is perpendicular to both u and v. Since both

3In principle the integration also gives an integration constant, i.e. a t-independent quantity (which could depend on
7). This is set to 0 since the time dependence of the problem isn’t consistent with a time-independent contribution to E
(this could be argued more carefully but I won’t do that here).



E,.q and B,,q are proportional to the cross product between 7 and another vector (p for B,,q and 7 X p
for E,aq), it follows that (iii) Brad, Fraa L 7. Also, we can see from the given expressions that

Erad = —cf X Brada (61)

so it similarly follows that (ii) Eyaq L Byad, and furthermore that (iii) |Eyaq| = ¢|#||Bradl sin(n/2) =
C|Brad|~

(f) 1. We introduce a spherical surface a defined by r = constant (— 00). The time-averaged radiated
power is

(P) = f (S) - da, (62)

Inserting da = fda = 7#r2dS) gives

(P) = f<s> SPr2dQ) = /(%)dﬂ, (63)

which gives
dP

{(Ga
In the following I will calculate the Poynting vector S = (1/10)(Erad X Brad) from the expressions for
E,.q and B,,q given in the problem text (the alternative calculation of S directly from (56) and (59) is
straightforward). Using (61) and vector identity (2) in the general formula set gives

=(8) - 7r2. (64)

S = iBrad X (’fl X Brad) = i ﬁ(Brad . Brad) - Brad (Brad . 'f.) = iBr2ad'fl- (65)
1o 1o 2 o
=0

The electric dipole moment is

p(t) = q(t)gﬁ + (—q(t))(—gé) = q(t)dz = Zqpd coswt = Zpy cos wt (66)
with pg = qod. Thus
Ba = —4’;:28? xp(t—r/c)= —4’;20(—0.)2)]90 cosw(t —r/c)](F x 2) (67)
2 .
S ) (69

dre r

where we used that 2 x # = ¢ sin . The result (68) is the same result as (56). Inserting it into (65) gives

wipopd sin® 6, .
S = Tonte 2 Co8 [w(t —r/c)|r. (69)

We take the time average using (cos?[w(t — r/c)]) = 1/2. Then (64) gives

<£> _ w4/’L0p%
dQ’  3272¢

We see that the radiation is maximal for @ = 7/2 and minimal for § =0 and 6 = 7.

sin? 6. (70)

2. Using df) = sin 0d0d¢ gives

dP w4u0p(2) 2m ™ )
P) = —_— Q = 3] 3 . 1
(P) /(dQ>d T3, /O d¢/o sin® 0 sin 0d0 (71)

1
Introducing = = cosf, the #-integral can be rewritten as f_ll(l —2?)dr =2 [m - mg] ‘0 =2(1-1/3) =

4/3, so

1
3

w? p1op}
P) = . 72
(P) e (72)



