
TFY4240 Electromagnetic theory: Solution to exam, spring 2019

Problem 1

In this problem we will encounter equations on the form

∞∑
`=0

f`P`(cos θ) =

∞∑
`=0

g`P`(cos θ), (1)

where f` and g` are coefficients. Eq. (1) implies that1

f` = g`. (2)

(a) Let us first consider the potential outside the shell (r > R), which we call V out. As there is no charge
there, V out obeys the Laplace equation. Since furthermore the potential on the shell is independent of
the azimuthal angle φ, the same will be true for V out, which therefore may be expanded as (cf. Eq. (1)
in the set of specific formulas)

V out(r, θ) =

∞∑
`=0

(
Aout
` r` +

Bout
`

r`+1

)
P`(cos θ). (3)

Since there is no charge at infinity (i.e. for r →∞), we may set V out = 0 there. This gives Aout
` = 0 for all

`. Furthermore, the condition that V is a continuous function gives for r = R that V out(R, θ) = V (R, θ),
i.e.

∞∑
`=0

Bout
`

R`+1
P`(cos θ) =

∞∑
`=0

V`P`(cos θ) (4)

which by (1)-(2) implies Bout
` = V`R

`+1. Thus

V out(r, θ) =

∞∑
`=0

V`

(
R

r

)`+1

P`(cos θ). (5)

Let us next consider the potential inside the shell (r < R), which we call V in. By the same arguments
as for V out, we may expand V in as

V in(r, θ) =

∞∑
`=0

(
Ain
` r

` +
Bin
`

r`+1

)
P`(cos θ). (6)

As there is no charge at the origin (r = 0), V in cannot diverge as r → 0. This implies Bin
` = 0 for all `.

Furthermore, the condition that V is continuous gives for r = R that V in(R, θ) = V (R, θ), i.e.

∞∑
`=0

Ain
` R

`P`(cos θ) =

∞∑
`=0

V`P`(cos θ), (7)

which implies Ain
` = V`/R

`. Thus

V in(r, θ) =

∞∑
`=0

V`

( r
R

)`
P`(cos θ). (8)

(b) Using Eq. (4) in the set of specific formulas (which may be derived from Gauss’s law), and that the

1You could assume (2) without proof. To prove it, multiply (1) by P`′ (cos θ) sin θ and integrate θ from 0 to π, change
variables to x = cos θ, and use Eq. (3) in the specific formula set.
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spherical shape of the shell implies n̂ = r̂ , i.e. ∂/∂n = ∂/∂r, the surface charge density is

σ = −ε0
[
∂V out

∂r
− ∂V in

∂r

] ∣∣∣∣∣
r=R

(9)

= −ε0
∞∑
`=0

V`P`(cos θ)

[
R`+1 ∂

∂r
r−(`+1) −R−` ∂

∂r
r`
] ∣∣∣∣∣
r=R

(10)

= −ε0
∞∑
`=0

V`P`(cos θ)
[
R`+1(−1)(`+ 1)r−(`+1)−1 −R−``r`−1

] ∣∣∣∣∣
r=R

(11)

= −ε0
∞∑
`=0

V`P`(cos θ) [(−1)(`+ 1)− `]R−1 (12)

=
ε0
R

∞∑
`=0

V`(2`+ 1)P`(cos θ). (13)

(c) + (d) The problem text asks for the electric potential produced by the polarization P . I will call
this potential VP , to emphasize that it is not equal to the total electric potential (which would also
include the potential of the external field that creates P in the first place). The associated electric field
is EP = −∇VP .

In general, VP (r) is the sum of two contributions: one from the volume bound charge density ρb = −∇·P ,
and one from the surface bound charge density σb = P · n̂. These two contributions may in principle be
found from the same integration formulas that give the potential produced by any electrostatic volume
or surface charge density, i.e.

1

4πε0

∫
Ω

ρb(r
′)d3r′

|r − r′|
gives the contribution from the volume bound charge, (14)

1

4πε0

∫
a

σb(r
′)da′

|r − r′|
gives the contribution from the surface bound charge. (15)

Here the integrals are over the volume Ω (more precisely, over the interior of the volume, excluding any
surface contribution) and over the surface a, respectively, of the dielectric body. In our problem, since
P is uniform, ρb = −∇ · P = 0. So the only contribution to VP comes from the surface bound charge.
Picking the z axis in the direction of P and the origin at the center of the dielectric sphere, we have

σb = P · n̂ = P ẑ · r̂ = P cos θ. (16)

The fact that σb is independent of φ means that we may make use of the mathematical similarities
between this problem of finding VP and the problem of finding V and σ in (a) and (b) (this method is
easier than trying to directly evaluate the integral in (15)). The result (13) may be written

σ =

∞∑
`=0

σ`P`(cos θ), (17)

where the coefficient σ` is

σ` =
ε0
R
V`(2`+ 1). (18)

On the other hand, using that P1(cos θ) = cos θ, Eq. (16) may be written

σb = PP1(cos θ). (19)

Equating (19) and (17) implies
σ` = Pδ`,1. (20)

Next, we find V` from (18):

V` =
R

ε0

σ`
2`+ 1

=
R

ε0

P

2`+ 1
δ`,1 =

PR

3ε0
δ`,1. (21)
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To find V out
P we insert (21) in (5), which gives

V out
P =

∞∑
`=0

PR

3ε0
δ`,1

(
R

r

)`+1

P`(cos θ) =
PR3 cos θ

3ε0r2
. (22)

By introducing the electric dipole moment of the dielectric sphere, p =
∫

Ω
P = 4πR3

3 P , we can rewrite
V out
P as

V out
P =

p · r̂
4πε0r2

, (23)

which we recognize as an electric dipole potential. Consequently, Eout
P is an electric dipole field:

Eout
P = −∇V out

P = −∂V
out
P

∂r
r̂ − 1

r

∂V out
P

∂θ
θ̂ =

p

4πε0r3
(2 cos θ r̂ + sin θ θ̂). (24)

Note that for an electric dipole, the potential decays like 1/r2 and the field decays like 1/r3.

To find V in
P we insert (21) in (8), which gives

V in
P =

∞∑
`=0

PR

3ε0
δ`,1

( r
R

)`
P`(cos θ) =

P

3ε0
r cos θ =

P

3ε0
z. (25)

Thus

Ein
P = −∇V in

P = − P

3ε0
ẑ = − P

3ε0
. (26)

We see that Ein
P is uniform and points in the direction opposite to P .

Remarks about (c) and (d):

• Unfortunately some students assumed that the dielectric was simple (i.e. linear and isotropic).
Note that the problem text did not say that the dielectric was simple, nor did it introduce any
parameters characteristic of a simple dielectric, such as χ, κ (= 1 +χ), or ε (= ε0κ). Furthermore,
the equation P = ε0χE valid for a simple dielectric was not in the set of specific formulas.

• Even if the dielectric had been simple, note that the equation P = ε0χE relates the polarization
P to the total electric field E inside a simple dielectric, not the electric field Ein

P produced by the
polarization. The two fields are related by E = Eapplied +EP , where Eapplied is the external field
that the experimentalist applies. Note in particular that E and Ein

P point in opposite directions.

Problem 2

(a) 1. To find the potential in the region z > 0 we replace the conductor with an ”image” point charge
q′ at the point (x, y, z) = (0, 0,−d). The potential is then

V (x, y, z) =
1

4πε0

[
q√

x2 + y2 + (z − d)2
+

q′√
x2 + y2 + (z + d)2

]
. (27)

To find q′ we use the boundary condition on V , which is that V = 0 for z = 0 since the conductor is
grounded. Thus V (x, y, 0) = 1

4πε0
√
x2+y2+d2

(q + q′) = 0, which gives q′ = −q.

2. The force Fq on q is

Fq = qE(0, 0, d) = −q∇V

∣∣∣∣∣
(x,y,z)=(0,0,d)

(28)

= − q2

4πε0
∇

[
1√

x2 + y2 + (z − d)2
− 1√

x2 + y2 + (z + d)2

] ∣∣∣∣∣
(x,y,z)=(0,0,d)

. (29)
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Here, the first term on the RHS is due to the field of the charge q itself. This ”self-force” is zero,2 leaving
only the contribution from the second term due to the image charge −q:

Fq =
q2

4πε0

(
−1

2

)
(x2 + y2 + (z + d)2)−3/2(2xx̂+ 2yŷ + 2(z + d)ẑ)|

∣∣∣
(x,y,z)=(0,0,d)

(30)

= − q2

4πε0

2dẑ

(2d)3
= − q2

4πε0(2d)2
ẑ. (31)

This result could have been found more easily by noting that Fq is given by force between q and the
image charge −q, which is of Coulomb form. The direction of the force is down, which makes sense,
since physically the force is due to surface charge on the conductor which arises due to attraction to q
and thus has the opposite sign of q.

(b) 1. The surface charge density is (obtained e.g. by adapting Eq. (4) in the formula set, or by deriving
it from Gauss’s law)

σ(x, y) = −ε0
[
∂Vabove

∂z
− ∂Vbelow

∂z

] ∣∣∣∣∣
z=0

. (32)

Here Vabove is the V (x, y, z) that we found in (a), while Vbelow is the potential in the conductor, which
is 0. Thus the second term on the RHS vanishes, leaving

σ(x, y) = −ε0
q

4πε0

(
−1

2

)[
2(z − d)

(x2 + y2 + (z − d)2)3/2
− 2(z + d)

(x2 + y2 + (z + d)2)3/2

] ∣∣∣∣∣
z=0

(33)

= − qd

2π(x2 + y2 + d2)3/2
. (34)

Note that this expression for the surface charge density σ(x, y) has the following properties, all of which
are as expected: (i) It has the opposite sign of q, (ii) it is radially symmetric in the xy plane, i.e. its

dependence on x and y can be expressed entirely in terms of the radial coordinate s =
√
x2 + y2 in the

xy plane, (iii) it has dimensions charge/(distance squared), i.e. charge/area.

2. Let the total surface charge density be Q. The easiest way to find Q is by considering the monopole
term in the multipole expansion of V (x, y, z) for large r =

√
x2 + y2 + z2 (with z > 0 so we are above

the conductor). The monopole term Qtot/4πε0r vanishes, since from the expression for V (x, y, z), the
total charge Qtot = q+(−q) = 0. In the physical system (by which I mean the original system consisting
of the charge q and the conductor, in contrast to the fictitious system involving the image charge), any
charge in addition to the point charge q must be located on the surface of the conductor. Thus we must
have Qtot = q +Q, which gives Q = −q.

Alternatively, Q may be found by integrating σ(x, y) over the xy plane:

Q =

∫ ∞
−∞

dx

∫ ∞
−∞

dy σ(x, y) = − qd
2π

∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

(x2 + y2 + d2)3/2
. (35)

Because of the radial symmetry of the integrand, we switch to polar coordinates s and φ. This gives

Q = − qd
2π

∫ 2π

0

dφ

∫ ∞
0

ds s
1

(s2 + d2)3/2

u≡s2+d2
= − qd

2π
· 2π · 1

2

∫ ∞
d2

duu−3/2 (36)

= −qd
2

(−2)u−1/2

∣∣∣∣∣
∞

d2

= qd(0− (d2)−1/2) = −q. (37)

2Some additional remarks on the self-force (not needed for solving the exam problem): Attempting to evaluate it directly
fails due to the vanishing (z − d). But one can use a more indirect way, by averaging the self-field over a sphere of radius
R centered on the charge, and then decreasing R towards the radius of the particle (which for a true point particle is 0,
which can lead to subtleties on its own). Since the self-field is of Coulomb form, its magnitude is the same at all points on
the sphere, whereas its direction is radial. Thus the average of the self-field over the sphere vanishes, giving zero self-force.
Interestingly, the self-force wouldn’t vanish for an accelerated particle. This is related to the so-called radiation reaction,
which we didn’t have time to cover in this year’s course.
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3. On the surface of the conductor, an infinitesimal area element da = dxdy that has charge σ(x, y)da
and is located at r = (x, y, 0), acts on the charge q at rq = (0, 0, d) with a force dFq given by Coulomb’s
law:

dFq =
qσ(x, y)dxdy

4πε0R2
R̂ =

qσ(x, y)dxdy

4πε0R3
R (38)

where I have here defined R ≡ rq − r = −xx̂− yŷ+ dẑ, R = |R| =
√
x2 + y2 + d2, and R̂ = R/R. The

total force is found by integrating over the whole xy plane:

Fq =

∫
dFq =

q

4πε0

∫ ∞
−∞

dx

∫ ∞
−∞

dy
σ(x, y)

(x2 + y2 + d2)3/2
(−xx̂− yŷ + dẑ). (39)

Since σ(x, y) is an even function of x (y), the term proportional to x̂ (ŷ) involves an integrand that is
odd in x (y), so its integral vanishes. Therefore only the term proportional to ẑ survives, giving

Fq =

∫
dFq = ẑ

qd

4πε0

∫ ∞
−∞

dx

∫ ∞
−∞

dy
σ(x, y)

(x2 + y2 + d2)3/2
. (40)

(c) In this equation, Ω is an arbitrary volume and a is the surface of Ω.

• The first term: F is the total electromagnetic force (i.e. Lorentz force) on all charges inside Ω.

• The second term: This is a surface integral over a, where
←→
T is the Maxwell stress tensor with

components Tij , with the interpretation that −
←→
T is the momentum flux density (momentum cur-

rent density); more specifically, −Tij is the momentum in the i direction crossing a surface oriented
in the j direction, per unit area, per unit time. The second term can therefore be interpreted

as momentum current into Ω. Alternatively,
←→
T can be given a force-per-unit-area interpretation,

with the diagonal components (i = j) being pressures and the off-diagonal components (i 6= j)
being shears.

• The third term: Here S/c2 is the momentum density gEM of the electromagnetic field, where S
is the Poynting vector. The volume integral thus gives the total momentum pEM stored in the
electromagnetic fields inside Ω. The third term thus subtracts the time rate of change of pEM.

(The equation is closely connected to conservation of momentum. With F = dpmech

dt , where pmech is
the total (mechanical) momentum of the charges inside Ω, the equation expresses that the time rate of
change of the total momentum pmech + pEM in Ω equals the momentum current flowing into Ω.)

(d) In this problem the third term in the equation disappears. This can be argued either because B = 0
in this problem, so S = 0, or because the problem is static, so d/dt gives 0. We are thus left with

Fq =

∮
a

←→
T · da (41)

where a is taken as the surface of the ”upper half-sphere” of radius R (R →∞), with the center of the
sphere infinitesimally above (0, 0, 0), so that the only charge inside the volume Ω enclosed by a is the
charge q. The surface area a consists of the curved part of the half-sphere (the ”northern hemisphere”)
and the ”equatorial disk” in the xy plane. Since static fields fall off at least as fast as 1/R2, and since

Tij is quadratic in the fields,
←→
T · da will fall off at least as fast as (1/R2)2R2 = 1/R2 on the curved part

of the surface, which will thus not contribute for R → ∞. Thus we are left with the contribution from
the equatorial disk, which in the limit R → ∞ becomes the whole xy plane. Since da = n̂ da should
point out of Ω, the unit vector n = −ẑ. Thus (using Einstein’s summation convention)

←→
T · da = (Tij êi ⊗ êj) · (−daẑ) = −da Tij êi(êj · ẑ) = −da Tij êiδjz = −da Tizêi

= −da(Txzx̂+ Tyzŷ + Tzzẑ). (42)

Since E just outside a conductor has no components parallel to the conductor surface, Ex = Ey = 0, so
Tzx = ε0EzEx = 0 and Tzy = ε0EzEy = 0. This leaves the contribution from

Tzz = ε0

(
E2
z −

1

2
E2

)
=
ε0
2
E2
z =

ε0
2

(
− qd

2πε0(x2 + y2 + d2)3/2

)2

=
q2d2

8π2ε0(x2 + y2 + d2)3
(43)
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where I used Ez = σ(x, y)/ε0. Thus

Fq = −ẑ q
2d2

8π2ε0

∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

(x2 + y2 + d2)3
. (44)

(Incidentally, we can be sure that this expression is correct if we notice that one arrives at the same
expression by inserting (34) into (40.) Using polar coordinates, the integral becomes

2π

∫ ∞
0

ds s
1

(s2 + d2)3

u≡s2+d2
= 2π · 1

2

∫ ∞
d2

duu−3 = π

(
−1

2

)
u−2

∣∣∣∣∣
∞

d2

= −π
2

(0− (d2)−2) =
π

2d4
. (45)

Inserting this into (44) we arrive at the same result as in 2(a)2.

Problem 3

(a)• The factors δ(x) and δ(y) are zero for x 6= 0 and y 6= 0, respectively, consistent with the wire going
along the z axis. As j is a vector, it is thus directed along the z axis, which explains the factor ẑ.

• As the wire goes between the two the charges at z = ±d/2, it should vanish for z > d/2 and
z < −d/2. This is taken care of by the Heaviside step function Θ(d/2− |z).

• By definition of a current density j, the surface integral
∫
a
j · da gives the current through the

(oriented) surface a. Taking a to be plane parallel to the xy plane, for a value of z between −d/2
and d/2, oriented in the +ẑ direction (i.e. the normal vector n̂ in da = n̂dxdy is n̂ = +ẑ), the
integral gives the current in the upward direction:

ẑ
dq

dt

∫ ∞
−∞

dx

∫ ∞
−∞

dy δ(x)δ(y) · n̂dx dy = (ẑ · n̂)
dq

dt
= +

dq

dt
. (46)

This agrees with the fact that the upper charge is q and the lower charge is −q.

(b) Defining the ”complexified” version of q as q̃, with q = Re(q̃) (and similarly for other quantities), we
can take q̃(t) = q0e

−iωt. This gives

j̃(r, t) = ẑ
dq̃(t)

dt
δ(x)δ(y)Θ(d/2− |z|) (47)

= −iωẑq̃(t)δ(x)δ(y)Θ(d/2− |z|). (48)

Thus, with tret = t− |r − r′|/c being the retarded time, the complexified vector potential in the Lorenz
gauge is (cf. Eq. (7) in the set of specific formulas):

Ã(r, t) =
µ0

4π

∫
d3r′

j̃(r′, tret)

|r − r′|
(49)

= −iωẑ µ0

4π

∫
d3r′

1

|r − r′|
q̃(tret)δ(x

′)δ(y′)Θ(d/2− |z′|) (50)

= −iωq0ẑ
µ0

4π

∫
d3r′

1

|r − r′|
exp [−iω(t− |r − r′|/c)] δ(x′)δ(y′)Θ(d/2− |z′|). (51)

Because of the Dirac delta functions δ(x′) and δ(y′), doing the integrals over x′ and y′ is easy. As these
integrations enforce x′ = y′ = 0, they reduce r′ to z′ẑ. The remaining integration over z′ runs from −∞
to +∞, but because the Heaviside step function is zero for |z| > d/2 and 1 for |z| < d/2, we may write

Ã(r, t) = −iωq0ẑ
µ0

4π

∫ d/2

−d/2
dz′

1

|r − z′ẑ|
exp [−iω(t− |r − z′ẑ|/c)] . (52)

Since |z′| < d/2 and d � r, it follows that |r − z′ẑ| ≈ r. Making this approximation corresponds to
using just the leading term in the Taylor series expansion of |r− z′ẑ| around z′ = 0. The integrand then
becomes independent of z′, giving

Ã(r, t) ≈ −iωµ0q0d

4π

e−iω(t−r/c)

r
ẑ. (53)
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Considering also the 1st order term in the Taylor expansion, we would get two types of corrections
in the integrand in (52) (as only the order of magnitude of the corrections matter in the following,
I don’t discuss their detailed form, such as Taylor series coefficients.) First, the factor 1/r would be
replaced by 1

r (1+O(d/r)) (here O means ”of the order of”). Thus the correction term goes like 1/r2 and

therefore wouldn’t contribute to radiation, so we drop it. Second, the factor eiωr/c would be replaced
by eiω(r+O(d))/c = eiωr/ceiO(ωd/c). Since by assumption d � c/ω, i.e. ωd/c � 1, we may approximate
eiO(ωd/c) ≈ 1 + O(ωd/c). Although the addition to 1 here would give a contribution to the radiation
fields, we drop it since it is a small correction (i.e. keeping just the term 1 gives the leading part of the
radiation fields). Thus we are left with (53). Taking the real part gives

Arad(r, t) = −ωµ0q0d

4π

sin[ω(t− r/c)]
r

ẑ. (54)

(c) To find Brad we start from Brad = ∇×Arad and throw away any terms that decay faster than 1/r.
We may in principle calculate the curl in any coordinate system we choose (cartesian, spherical, and
cylindrical being the relevant ones for us). For this calculation I will use cylindrical coordinates (s, φ,
z). We see that Arad only has a z component, which only depends on s and z (via r =

√
s2 + z2). Thus

Brad(r, t) = −∂Arad,z

∂s
φ̂ = −φ̂∂r

∂s

∂Arad,z

∂r
= φ̂

(s
r

) ωµ0q0d

4π

∂

∂r

sin[ω(t− r/c)]
r

. (55)

Using the product rule for differentiation, we only get a contribution to radiation from differentiating
the sine function with respect to r (the differentiation of 1/r gives an additional factor of 1/r). Also
note that s/r = cos(π/2− θ) = sin θ. Thus

Brad(r, t) = −ω
2µ0q0d

4πc
sin θ

cos[ω(t− r/c)]
r

φ̂. (56)

(d) Erad can be conveniently found from the 4th Maxwell equation, the Ampere-Maxwell law (as done
in the lectures). This law involves j, but this is not a problem, since we want to find Erad far away
from the dipole, where j = 0 anyway. To calculate ∇ × Brad from (56) it is natural to use spherical
coordinates. This gives

∂Erad

∂t
= c2∇×Brad = c2

[
r̂

1

r sin θ

∂(sin θBrad,φ)

∂θ
− θ̂ 1

r

∂(rBrad,φ)

∂r

]
. (57)

We drop the term proportional to r̂ because it falls off like 1/r2. Thus

∂Erad

∂t
=
ω3µ0q0d

4π
sin θ

sin[ω(t− r/c)]
r

θ̂ (58)

Integrating this expression with respect to t for fixed r gives3

Erad(r, t) = −ω
2µ0q0d

4π
sin θ

cos[ω(t− r/c)]
r

θ̂. (59)

(e) Let me first use (56) and (59). It follows from these equations that

|Brad(r, t)| = ω2µ0q0d

4πc
sin θ

| cos[ω(t− r/c)]|
r

, |Erad(r, t)| = ω2µ0q0d

4π
sin θ

| cos[ω(t− r/c)]|
r

, (60)

so (i) |Brad|/|Erad| = 1/c. Furthermore, Brad ‖ φ̂ and Erad ‖ θ̂. Therefore (ii) Brad ⊥ Erad since φ̂ ⊥ θ̂,

and (iii) Brad, Erad ⊥ r̂ since φ̂, θ̂ ⊥ r̂.

Alternatively, one can use the expressions for Erad and Brad given in the problem text. We will also use
that for general vectors u and v, the cross product u× v is perpendicular to both u and v. Since both

3In principle the integration also gives an integration constant, i.e. a t-independent quantity (which could depend on
r). This is set to 0 since the time dependence of the problem isn’t consistent with a time-independent contribution to E
(this could be argued more carefully but I won’t do that here).
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Erad and Brad are proportional to the cross product between r̂ and another vector (p̈ for Brad and r̂× p̈
for Erad), it follows that (iii) Brad,Erad ⊥ r̂. Also, we can see from the given expressions that

Erad = −cr̂ ×Brad, (61)

so it similarly follows that (ii) Erad ⊥ Brad, and furthermore that (iii) |Erad| = c|r̂||Brad| sin(π/2) =
c|Brad|.

(f) 1. We introduce a spherical surface a defined by r = constant (→ ∞). The time-averaged radiated
power is

〈P 〉 =

∮
a

〈S〉 · da, (62)

Inserting da = r̂da = r̂r2dΩ gives

〈P 〉 =

∮
a

〈S〉 · r̂r2dΩ ≡
∫
〈dP
dΩ
〉dΩ, (63)

which gives

〈dP
dΩ
〉 = 〈S〉 · r̂r2. (64)

In the following I will calculate the Poynting vector S = (1/µ0)(Erad ×Brad) from the expressions for
Erad and Brad given in the problem text (the alternative calculation of S directly from (56) and (59) is
straightforward). Using (61) and vector identity (2) in the general formula set gives

S =
c

µ0
Brad × (r̂ ×Brad) =

c

µ0

r̂(Brad ·Brad)−Brad (Brad · r̂)︸ ︷︷ ︸
=0

 =
c

µ0
B2

radr̂. (65)

The electric dipole moment is

p(t) = q(t)
d

2
ẑ + (−q(t))(−d

2
ẑ) = q(t)dẑ = ẑq0d cosωt = ẑp0 cosωt (66)

with p0 ≡ q0d. Thus

Brad = − µ0

4πrc
r̂ × p̈(t− r/c) = − µ0

4πrc
(−ω2)p0 cos[ω(t− r/c)](r̂ × ẑ) (67)

= −ω
2µ0p0

4πc

sin θ

r
cos[ω(t− r/c)]φ̂, (68)

where we used that ẑ× r̂ = φ̂ sin θ. The result (68) is the same result as (56). Inserting it into (65) gives

S =
ω4µ0p

2
0

16π2c

sin2 θ

r2
cos2[ω(t− r/c)]r̂. (69)

We take the time average using 〈cos2[ω(t− r/c)]〉 = 1/2. Then (64) gives

〈dP
dΩ
〉 =

ω4µ0p
2
0

32π2c
sin2 θ. (70)

We see that the radiation is maximal for θ = π/2 and minimal for θ = 0 and θ = π.

2. Using dΩ = sin θdθdφ gives

〈P 〉 =

∫
〈dP
dΩ
〉dΩ =

ω4µ0p
2
0

32π2c

∫ 2π

0

dφ

∫ π

0

sin2 θ sin θdθ. (71)

Introducing x = cos θ, the θ-integral can be rewritten as
∫ 1

−1
(1− x2)dx = 2

[
x− 1

3x
3
] ∣∣∣1

0
= 2(1− 1/3) =

4/3, so

〈P 〉 =
ω4µ0p

2
0

12πc
. (72)
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