
TFY4240 Electromagnetic theory: Solution to exam, spring 2021

Problem 1

(a) For convenience I give the physical charge the label 0. The potential outside the conductor is

V =

3∑
i=0

Vi where Vi =
qi

4πε0
√

(x− xi)2 + (y − yi)2 + z2
. (1)

1. The potential V should be 0 everywhere on the conductor surface. By taking q1 = −q, V1 will cancel
V0 at the horizontal plane, but q1 will also contribute V1 6= 0 at the vertical plane. By taking q3 = −q, V3

will cancel V0 at the vertical plane, but q3 will also contribute V3 6= 0 at the horizontal plane. The two
unwanted contributions from q1 and q3 are cancelled by V2 by taking q2 = +q. Thus V = 0 is ensured
by pairwise cancellations of the potentials Vi, as summarized here:

Horizontal plane: V0 + V1 = 0 and V2 + V3 = 0, (2)

Vertical plane: V0 + V3 = 0 and V1 + V2 = 0. (3)

2. The surface charge density is

σ = −ε0 (∂nV |outside − ∂nV |inside). (4)

where ∂n = n · ∇, with n the unit vector perpendicular to the conductor surface, pointing out of the
conductor. The two terms refer to the derivatives just outside and just inside the conductor. The term
labeled ”inside” vanishes because V is constant in the conductor. For the horizontal plate, n = ŷ, giving

σ = σh(x, z) = −ε0
3∑
i=0

∂yVi
∣∣
y=0

. (5)

Here

∂yVi =
qi

4πε0
·
(
−1

2

)
1

[(x− xi)2 + (y − yi)2 + z2]3/2
· 2(y − yi) · 1. (6)

This gives

σh(x, z) = − 1

4π

3∑
i=0

qiyi
[(x− xi)2 + y2

i + z2]3/2

= − qb
2π

(
1

[(x− a)2 + b2 + z2]3/2
− 1

[(x+ a)2 + b2 + z2]3/2

)
. (7)

The total charge on the horizontal plate is

Qh =

∫ ∞
0

dx

∫ ∞
−∞

dz σh(x, z). (8)

The z-integral is ∫ ∞
−∞

dz

[(x± a)2 + b2 + z2]3/2
=

2

(x± a)2 + b2
. (9)

Next, doing the x-integral gives∫ ∞
0

dx
2

[(x± a)2 + b2]
=

2

b
arctan

(
x± a
b

) ∣∣∣∣∣
∞

0

=
2

b

(
arctan(∞)− arctan

(
±a
b

))
=

2

b

(π
2
∓ arctan

(a
b

))
. (10)

Thus

Qh = − qb
2π
· 2

b

[(π
2

+ arctan
(a
b

))
−
(π

2
− arctan

(a
b

))]
= −2q

π
arctan

(a
b

)
. (11)
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3. By symmetry, Qv can be found by interchanging a and b in Qh. Thus, using also the given formula,

Qh +Qv = −2q

π

[
arctan

(a
b

)
+ arctan

(
b

a

)]
= −2q

π
· π

2
= −q. (12)

That this result makes sense can be argued as follows: The multipole expansion for V outside the
conductor must be the same regardless of whether it is found from the fictitious system that gives (1)
or from the physical system whose charges include q0 and the surface charge density on the conductor.
Thus in particular the total charge Q entering the monopole term can be written in two different ways:

Q =

3∑
i=0

qi = q0 +Qh +Qv. (13)

Thus Qh +Qv =
∑3
i=1 qi = −q, in agreement with (12). (More generally, this argument shows that the

sum of the image charges equals the total charge on the conductor.)

(b) Again V should be 0 everywhere on the conductor surface, which here consists of a horizontal part
and a (hemi-)spherical part. This problem can be solved with a reasoning very similar to that used
in 1(a)1. We follow the suggestion of making use of results from simpler problems. Two simpler (and
previously encountered) problems in the category ”a point charge outside a conductor” that have some
overlap with this one have a conducting surface that is (i) an infinite horizontal plane and (ii) spherical.1

A solution with 3 image charges q1, q2, q3, placed as shown in the figure below, can be argued as follows:

The image charge q1 = −q will cancel V0 at the horizontal part of the conductor surface but will also
contribute V1 6= 0 at the spherical part. The image charge q3 (with appropriate charge and position on
the line passing through the origin and q0) will cancel V0 at the spherical part but will also contribute
V3 6= 0 at the horizontal part. The two unwanted contributions from q1 and q3 can be cancelled by q2

by taking q2 to have charge −q3 and be placed symmetrically to q3 across the x-axis, as then V = 0 is
ensured by pairwise cancellations of the potentials Vi as summarized here:

Horizontal part: V0 + V1 = 0 and V2 + V3 = 0, (14)

Spherical part: V0 + V3 = 0 and V1 + V2 = 0. (15)

It only remains to determine the charge and position of q1. These are easily found by looking up the
results for the charge and position of the single image charge in the simpler problem1 and translat-
ing these to our situation. (It will involve the radius R and the distance

√
a2 + b2 from the origin to

q0.) Thus V is given by Eq. (1), with the charges qi and their positions (xi, yi, 0) listed in the table below.

𝑥 

𝑦 

𝑞0 

𝑞2 
𝑞3 

𝑞1 

i qi xi yi
0 q a b
1 −q a −b
2 qR√

a2+b2
aR2

a2+b2 − bR2

a2+b2

3 − qR√
a2+b2

aR2

a2+b2
bR2

a2+b2

(c) The electric multipole expansion for V is V (r) = Vmonopole(r) + Vdipole(r) + Vquadrupole(r) + . . . The

monopole moment is the total charge Q =
∑3
i=0 qi = 0, so the monopole term Vmonopole(r) = Q/(4πε0r)

vanishes. However, the dipole moment is nonzero:

p =

3∑
i=0

qiri = 2qb

(
1− R3

[a2 + b2]3/2

)
ŷ. (16)

1See Problem set 2 for the problem with a point charge outside a spherical conductor.
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Thus from large distances the system looks like a dipole:

V (r) ≈ Vdipole(r) =
p · r̂

4πε0r2
=

p · r
4πε0r3

=
qby

2πε0[x2 + y2 + z2]3/2

(
1− R3

[a2 + b2]3/2

)
. (17)

Problem 2

(a) See p. 9-11 in the lecture notes ”Frequency-dependent response of materials”.
(b) 1. The intensity of a wave w = I,R, T is defined as the magnitude of the time-average of the
associated Poynting vector, Iw = |〈Sw〉|. Using the formula

〈CD〉 =
1

2
Re(C̃∗D̃) (18)

we find

〈SI〉 =
1

2µ0
Re(Ẽ∗I × B̃I) =

1

2µ0
Re(Ẽ∗0Ie

−i(kIz−ωt) 1

c
Ẽ0Ie

i(kIz−ωt)x̂× ŷ)

=
1

2µ0c
|Ẽ0I |2ẑ =

1

2
ε0c|Ẽ0I |2 ẑ. (19)

An almost identical calculation gives

〈SR〉 = −1

2
ε0c|Ẽ0R|2 ẑ. (20)

Finally,

〈ST 〉 =
1

2µ0
Re(Ẽ∗0T e

−i(k∗T z−ωt) ñ

c
Ẽ0T e

i(kT z−ωt)x̂× ŷ)

=
1

2µ0c
|Ẽ0T |2e−2(ω/c)n′′zRe(ñ)ẑ =

1

2
ε0cn

′|Ẽ0T |2e−2(ω/c)n′′zẑ. (21)

Thus

II =
1

2
ε0c|Ẽ0I |2, (22)

IR =
1

2
ε0c|Ẽ0R|2, (23)

IT =
1

2
ε0cn

′|Ẽ0T |2e−2(ω/c)n′′z. (24)

2.

R =
IR
II

=
|Ẽ0R|2

|Ẽ0I |2
=

∣∣∣∣1− ñ1 + ñ

∣∣∣∣2 =
(n′ − 1)2 + (n′′)2

(n′ + 1)2 + (n′′)2
, (25)

T =
IT
II

z=0
= n′

|Ẽ0T |2

|Ẽ0I |2
=

4n′

|1 + ñ|2
=

4n′

(n′ + 1)2 + (n′′)2
. (26)

This gives

R+ T =
(n′ − 1)2 + (n′′)2 + 4n′

(n′ + 1)2 + (n′′)2
=

(n′ + 1)2 + (n′′)2

(n′ + 1)2 + (n′′)2
= 1. (27)

Thus the intensity of the incident wave is transferred to the reflected and transmitted waves. This is a
manifestation/consequence of energy conservation.
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(c) 1. There are several ways to prove this. I present three alternative proofs below. Also, in the Ap-
pendix I discuss some incorrect claims that were common in the answers to this question.

Proof 1. The time average of a periodic function f(t) with period T is defined as

〈f〉 ≡ 1

T

∫ T

0

dt f(t). (28)

Thus 〈
∂f

∂t

〉
=

1

T

∫ T

0

dt
∂f

∂t
=

1

T
(f(T )− f(0)) = 0. (29)

This very short and simple proof is also the most general one, as f is a general periodic function here.

Proof 2. In the medium, the Poynting vector is S = ST . Thus

∂S

∂t
=

1

µ0

∂

∂t
(ET ×BT ) =

1

µ0

(
∂ET
∂t
×BT +ET ×

∂BT

∂t

)
. (30)

Taking the time average gives〈
∂S

∂t

〉
=

1

µ0

(〈
∂ET
∂t
×BT

〉
+

〈
ET ×

∂BT

∂t

〉)
. (31)

Both fields have a simple harmonic time dependence with frequency ω. Their time derivatives are thus
also simple harmonics. Thus we may use (18) to find the two time averages in (31). Using that

∂̃ET
∂t

= −iωẼT ,
∂̃BT

∂t
= −iωB̃T , (32)

it follows that〈
∂S

∂t

〉
=

1

2µ0
Re((−iωẼT )∗ × B̃T + Ẽ∗T × (−iωB̃T )) =

ω

2µ0
Re[(i− i)Ẽ∗T × B̃T ) =

ω

2µ0
Re(0) = 0. (33)

Proof 3. This proof uses the physical fields, not the complex ones. First, we write the complex amplitude
Ẽ0T and the complex refractive index in polar form by introducing their magnitudes and phase angles:

Ẽ0T = |Ẽ0T |eiδ0T , (34)

ñ = |ñ|eiφ. (35)

This gives

ẼT = |Ẽ0T |ei(ω/c)n
′z−ωt+δ0T )e−(ω/c)n′′z x̂, (36)

B̃T =
|ñ|
c
|Ẽ0T |ei(ω/c)n

′z−ωt+δ0T +φ)e−(ω/c)n′′z ŷ. (37)

Thus

ET = Re(ẼT ) = |Ẽ0T | cos((ω/c)n′z − ωt+ δ0T )e−(ω/c)n′′z x̂, (38)

BT = Re(B̃T ) =
|ñ|
c
|Ẽ0T cos((ω/c)n′z − ωt+ δ0T + φ)e−(ω/c)n′′z ŷ. (39)

Thus

ST =
1

µ0
ET ×BT =

|ñ|
µ0c
|Ẽ0T |2 cos((ω/c)n′z−ωt+ δ0T ) cos((ω/c)n′z−ωt+ δ0T +φ)e−2(ω/c)n′′zẑ. (40)
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This looks complicated, but note that the only thing of importance here is the time dependence. Only
the two cosine factors are time-dependent, and their time dependence is restricted to the −ωt terms, so
everything else in each cosine argument can be lumped into a constant. Name the two constants γ and
η, i.e. γ = (ω/c)n′z + δ0T and η = (ω/c)n′z + δ0T + φ. Thus the product of the two cosines is

cos(γ − ωt) cos(η − ωt). (41)

Its time derivative is

d

dt
[cos(γ − ωt) cos(η − ωt)] = ω[sin(γ − ωt) cos(η − ωt) + cos(γ − ωt) sin(η − ωt)]

= ω sin(γ + η − 2ωt). (42)

The function sin(γ + η − 2ωt) is harmonic with period T/2, so its time average vanishes.

2. The total force on the charges and currents inside a volume Ω is

F =

∫
Ω

d3r f =

∫
Ω

d3r

[
∇ ·
←→
T − 1

c2
∂S

∂t

]
=

∫
a

da ·
←→
T − 1

c2

∫
Ω

d3r
∂S

∂t
. (43)

In the last transition we rewrote as usual the volume integral of ∇ ·
←→
T as a surface integral by using a

divergence theorem; in the resulting surface integral a is the closed surface that bounds the volume Ω.
Taking the time average gives

〈F 〉 =

∫
a

da · 〈
←→
T 〉 − 1

c2

∫
Ω

d3r

〈
∂S

∂t

〉
. (44)

We want the force on the medium; hence the volume Ω should be chosen to contain the medium in
its interior (and no other charges or currents; but that is not a complication here since there are none
outside the medium). We also want to make full use of the result proved in 2(c)1; hence this volume
should surround the medium ”tightly” so that we can use that

〈
∂S
∂t

〉
= 0 inside Ω. Thus with such a

choice of Ω,

〈F 〉 =

∫
a

da · 〈
←→
T 〉. (45)

Since the medium is (semi-)infinite we analyze a finite volume Ω that in the infinite-volume limit includes
the entire medium. Given the simple field dependence on the cartesian coordinates in this problem, i.e.

E = E(z)x̂, B = B(z)ŷ, (46)

we pick Ω to be a box (rectangular prism) with side lengths Lx, Ly, Lz. In the x direction we can
take the box to go from x = −Lx/2 to Lx/2, in the y direction from y = −Ly/2 to Ly/2, while in the
z direction it should go from z = 0 to Lz. Then the box will contain the entire medium in the limit
Lx, Ly, Lz →∞.

Next we analyze the contributions to (45) from the six faces of the box. For this discussion, we will use
that da = da n̂ where the unit vector n̂ should point out of the box.

• For the two faces with x = ±Lx/2, note that for each point (Lx/2, y, z) on the face with x = +Lx/2

with n̂ = +x̂, there is an opposite point (−Lx/2, y, z) with n̂ = −x̂. As
←→
T is identical at these

points (because the field components are x-independent, cf. (46)), the contributions da ·
←→
T from

such pairs of points cancel. Thus these two faces give zero net contribution.

• An exactly analogous argument holds for the two faces with y = ±Ly/2: For each point (x, Ly/2, z)
on the face with y = +Ly/2 with n̂ = +ŷ, there is an opposite point (x,−Ly/2, z) with n̂ = −ŷ.

As
←→
T is identical at these points (because the field components are y-independent, cf. (46)),

the contributions da ·
←→
T from such pairs of points cancel. Thus these two faces give zero net

contribution.
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• For the face at z = Lz, the nonzero components of
←→
T will decay exponentially as e−2(ω/c)n′′Lz

(because the fields in the medium decay like e−(ω/c)n′′z), so the contribution goes to 0 as Lz →∞.

• For the face at z = 0, n̂ = −ẑ, so

da ·
←→
T = −da ẑ · Tijx̂ix̂j = −daTij(ẑ · x̂i)x̂j = −daTijδizx̂j = −da(Tzxx̂+ Tzyŷ + Tzzẑ). (47)

Since Ez = Bz = 0 it follows that Tzx = Tzy = 0. Thus

da ·
←→
T = −da Tzzẑ. (48)

In conclusion, only the face at z = 0, i.e. at the vacuum-medium interface, will contribute. For this face
da = dxdy. Since the field components depend on neither x nor y (cf. (46)), the surface integral over the
interface will become proportional to its area A. Thus the force will diverge as A → ∞. But the force
per unit area will be finite:

〈F 〉
A

= −〈Tzz〉 ẑ.

It remains to evaluate 〈Tzz〉. We have

Tzz = ε0(E2
z −

1

2
E2) +

1

µ0
(B2

z −
1

2
B2) = −ε0

2
E2 − 1

2µ0
B2

⇒ 〈Tzz〉 = −ε0
2
〈E2〉 − 1

2µ0
〈B2〉. (50)

Using (18), the time averages can be found as

〈E ·E〉 =
1

2
Re(Ẽ∗ · Ẽ), (51)

〈B ·B〉 =
1

2
Re(B̃∗ · B̃). (52)

Since the medium should be completely inside Ω, we evaluate Tzz just outside the interface, on the
vacuum side (i.e. at z = 0−), where E = EI +ER and B = BI +BR. One finds

Ẽ∗ · Ẽ = (Ẽ∗I + Ẽ∗R) · (ẼI + ẼR)

= Ẽ∗I · ẼI + Ẽ∗R · ẼR + Ẽ∗I · ẼR + Ẽ∗R · ẼI
= |Ẽ0I |2 + |Ẽ0R|2 + Ẽ∗0IẼ0Re

−2ikIz + Ẽ∗0RẼ0Ie
2ikIz, (53)

B̃∗ · B̃ = (B̃∗I + B̃∗R) · (B̃I + B̃R)

= B̃∗I · B̃I + B̃∗R · B̃R + B̃∗I · B̃R + B̃∗R · B̃I

=
1

c2
(|Ẽ0I |2 + |Ẽ0R|2 − Ẽ∗0IẼ0Re

−2ikIz − Ẽ∗0RẼ0Ie
2ikIz). (54)

Note that the cross terms coupling the incident and reflected waves in (54) have the opposite sign from

those in (53); this comes from kR = −kI in the expressionBw = 1
c k̂w×Ew (w = I,R). As a consequence

of this, and 1/µ0 = ε0c
2, the contribution from these cross terms cancel in 〈Tzz〉, leaving

〈Tzz〉 = −1

2
ε0(|Ẽ0I |2 + |Ẽ0R|2). (55)

Using (22) and (25) this can be expressed as 〈Tzz〉 = − IIc (1 +R) and therefore

〈F 〉
A

=
II
c

(1 +R) ẑ. (56)

3. The result (56) shows that the force points in the ẑ direction, which makes intuitive sense since
the incident wave propagates in this direction. The magnitude of (56) is a pressure, usually called the
radiation pressure:

Prad =
II
c

(1 +R). (57)

6



It also makes sense that this pressure should increase with the intensity II of the incident wave. We also
see that it increases with R, with the two extreme cases being

R = 0 : Prad =
II
c
, (58)

R = 1 : Prad =
2II
c
. (59)

This is related to momentum conservation. When R = 0 there is no reflected wave, so the momentum of
the incident wave is transferred to the medium. When R = 1 the momentum of the reflected wave has
the same magnitude but opposite sign of the incident wave. Momentum conservation then implies that
twice as much momentum is transferred to the medium.2

Problem 3

(a) 1. Here R = r − rq, where rq is the position of the particle, v is its velocity, and a its acceleration.
A crucial fact is that due to the finite speed c of electromagnetic signals, the particle properties rq, v,
and a should not be evaluated at time t, but instead at the earlier so-called retarded time tret defined
by the equation

tret = t− |r − rq(tret)|
c

. (60)

2. In order to evaluate the fields at r = (x, y, z) at time t it is necessary to solve Eq. (60) for the retarded
time tret. For this problem it becomes

tret = t−
√
x2 + y2 + (z − z0 cos(ωtret))2

c
. (61)

3. This question3 can be answered for the general Eq. (60). The number of solutions for a given particle
trajectory and given (r, t) is equal to the number of intersections of the worldline of the particle (obtained
from rq(t)) with the past light cone of the spacetime point (r, t) in a spacetime diagram (because an elec-
tromagnetic signal sent from such an intersection point will pass through (r, t)). The particle worldline
is bound to intersect the past light cone. Furthermore, there cannot be more than one intersection, as
this would imply that the particle would have had to move at a velocity exceeding c during at least some
of the time between two such intersections, and this is impossible. Therefore there is one solution for tret.

4

(b) We may neglect the ”velocity field” that decays like 1/R2 in E, as it will not contribute to radiation.
This leaves the ”acceleration field”

Eacc(r, t) =
q

4πε0

R

(R · u)3
R× (u× a). (62)

For general (r, t) this is not easy to evaluate, not least because we don’t have an explicit expression for
tret (cf. 3(a)2.) However, since the question is concerned only with the combined conditions

z0/r � 1 and v/c� 1, (63)

the ratios appearing here play the role of small expansion parameters, so we are justified in neglecting
small non-leading contributions. This will simplify the expressions considerably. For example, one can
argue as follows. First, from v(tret) = −ωz0 sin(ωtret) we see that the maximum speed is ωz0. Thus
v/c� 1 implies ωz0/c� 1, which it will be useful to express as

ωO(z0)

c
� 1, (64)

2Discussed in the 15/3 lecture.
3Discussed in the 22/3 lecture.
4This is why we refer to the retarded time. Had there been more than one retarded time, each would have contributed

to the fields, and we would have had to add the different contributions.
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where O(z0) means z0 multiplied by a dimensionless number of order 1. Next, note that |r− rq(tret)| =
r +O(z0). Thus

ωtret = ω

(
t− |r − rq(tret)|

c

)
= ω

(
t− r +O(z0)

c

)
= ω(t− r/c) +

ωO(z0)

c
. (65)

Thus the cosine factor in zq(tret) = z0 cos(ωtret) becomes

cos(ωtret) = cos

[
ω(t− r/c) +

ωO(z0)

c

]
= cos[ω(t− r/c)] cos

[
ωO(z0)

c

]
− sin [ω(t− r/c)] sin

[
ωO(z0)

c

]
≈ cos[ω(t− r/c)], (66)

where the last approximation could be made because (64) implies cos
[
ωO(z0)

c

]
≈ 1 and sin

[
ωO(z0)

c

]
≈

ωO(z0)
c � 1. Thus we are justified in making the approximation tret ≈ t− r/c in ωtret. Therefore

a(tret) ≈ a(t− r/c) = −ω2z0 cos[ω(t− r/c)]ẑ. (67)

The first condition in (63) implies that in other places where R, R and R̂ appear we can approximate
it with r, r and r̂, and the second condition implies that we can neglect terms of O(v/c), so u ≈ cr̂.
Inserting these approximations into (62) gives the radiation field

Erad(r, t) ≈ q

4πε0c2r
r̂ × [r̂ × a(t− r/c)]. (68)

To evaluate the two cross products, we start with the inner one, using in turn (67) and r̂× ẑ = − sin θ ϕ̂,

and then r̂ × ϕ̂ = −θ̂ for the outer one. As a result, Eq. (68) becomes

Erad(r, t) ≈ − qz0ω
2

4πε0c2r
cos[ω(t− r/c)] sin θ θ̂. (69)

Now the magnetic field can be found from (1/c)R̂×Eacc(r, t). Making the same approximations as for

E gives (1/c)r̂ ×Erad(r, t). Finally, using r̂ × θ̂ = φ̂ gives

Brad(r, t) ≈ − qz0ω
2

4πε0c3r
cos[ω(t− r/c)] sin θ ϕ̂. (70)

Remark: The point charge has an electric dipole moment p = qrq, and it can be seen that (69)-(70) coin-
cide with the leading contribution to the fields of an arbitrary localized source which is the electric dipole
contribution given by5 Erad(r, t) = (µ0/4πr)r̂ × [r̂ × p̈(t− r/c)], Brad(r, t) = −(µ0/4πr)r̂ × p̈(t− r/c)
(when this contribution is nonzero). This therefore confirms the correctness of (69)-(70). More specif-
ically, (69)-(70) coincide with the radiation fields of an electric dipole with a dipole moment in the z
direction.6 Other quantities derived from these (like Srad; see below) will then also coincide.

(c) 1. The associated Poynting vector is

Srad(r, t) =
1

µ0
Erad(r, t)×Brad(r, t) =

q2z2
0ω

4

16π2ε0c3
cos2[ω(t− r/c)] sin

2 θ

r2
r̂,

where we used 1/µ0 = ε0c
2 and θ̂ × φ̂ = r̂. Using 〈cos2[ω(t− r/c)]〉 = 1/2 the time average is

〈Srad(r)〉 =
q2z2

0ω
4

32π2ε0c3
sin2 θ

r2
r̂. (70)

2. The power radiated through a sphere of radius r is P (t) =
∫
Srad(r, t) · da. Thus the energy U

radiated during a period T = 2π/ω is

U =

∫ T

0

dt P (t) = T 〈P 〉 = T

∫
〈Srad(r)〉 ·da =

2π

ω
· q

2z2
0ω

4

32π2ε0c3

∫ 2π

0

dϕ

∫ π

0

dθ sin θ sin2 θ︸ ︷︷ ︸
2π· 43

=
q2z2

0ω
3

6ε0c3
. (71)

5Discussed in 26/3 (replacement) lecture.
6Discussed in 25/3 lecture.
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Appendix: Incorrect claims in answers to 2(c)1

Looking through the exam answers to question 2(c)1, three incorrect claims were common. These seem
to be tied to mathematical issues, not physics. I hope the following discussion of them can be helpful.

The first incorrect claim is〈
∂S

∂t

〉
=

∂

∂t
〈S〉 (a logically incorrect statement) (72)

Both sides of this equation are 0, so in a trivial numerical sense the equation is true. But the rhs is not a
logical consequence of the lhs. On the rhs, the time average 〈S〉 is time-independent by construction, so
taking its time derivative must necessarily give 0. The rhs seems to have been ”obtained” from the lhs
side by pulling the time derivative outside of the integral. But this can not be done, since the integration
is also over the time variable, so the time derivative and integration do not commute. (In contrast, if
the integral had instead been over spatial variables, one could have pulled the time derivative outside.)
Another way to see this is that such commutation, if valid, should then also have been valid if the inte-
gration limits were changed to something else than an integral over a period. In that case the rhs would
continue to be 0 (since the integral still produces a time-independent quantity), but the lhs would then
in general not be 0, giving also a numerical contradiction.

The second incorrect claim is that S itself is time-independent. That this is incorrect can be seen ex-
plicitly from (40). This conclusion seems to have been reached by erroneously thinking that S itself, and
not merely its time-average, can be found by using (18).

The third incorrect claim can be phrased as follows: Given that C̃ and D̃ are the complex quantities
representing the real quantities C and D, then C̃D̃ is the complex quantity representing CD. (In the
present context this claim took the form that ST has the complex representation (1/µ0)ẼT × B̃T .) That
this claim is incorrect can be seen from a simple example. Suppose

C = C0 cos(kz − ωt+ δC) ⇒ C̃ = C̃0e
i(kz−ωt) (where C̃0 = C0e

iδC ), (73)

D = D0 cos(kz − ωt+ δD) ⇒ D̃ = D̃0e
i(kz−ωt) (where D̃0 = D0e

iδC ). (74)

Thus
C̃D̃ = C0D0e

i(2kz−2ωt+δC+δD) (75)

so
Re(C̃D̃) = C0D0 cos(2kz − 2ωt+ δC + δD), (76)

which is not equal to the physical, real, quantity

CD = C0D0 cos(kz − ωt+ δC) cos(kz − ωt+ δD). (77)

The discrepancy occurs because the real part of the product of two complex quantities does not only
get a contribution from the product of the individual real parts (which is the contribution we want)
but also gets a contribution from the product of the two individual imaginary parts. You can see both
contributions by using the formula for the cosine of a sum to rewrite the cosine on the rhs of (76) as
cos(kz − ωt+ δC) cos(kz − ωt+ δD)− sin(kz − ωt+ δC) sin(kz − ωt+ δD).
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