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Norwegian University of Science and Technology
Department of Physics

Contacts during the exam:
Pawel Sikorski, phone: 98486426

EXAM
TFY4335 BIONANOTECHNOLOGY

1st of December 2011. 09:00

Examination support materials:

• Formula sheet - see Appendix A

• Simple calculator (according to NTNU exam regulations)

• K. Rottmann: Matematisk formelsamling (eller tilsvarende)

• Carl Angell og Bjørn Ebbe Lian: Fysiske størrelser og enheter, navn og symboler (eller tilsvarende)

Answer must be written in English or Norwegian. You have to answer Question 1 and two (2)
out of three remaining questions. The maximum score for the exam is 100p.

Question 1: Short questions (30p)

1. What is define by λD (equation 54) and `B (equation 49). (10p)
Describes how electrostatic potential will change with distance, close to large, flat surface
with given charge density (derived for large flat surface and not any other object, as we do
derivation in 1D (nothing is changing in the direction parallel to the surface)). Electrostatic
potential is exponentially deceasing with distance and (equation 55) is e−1 at x = λD. λD
does not depend on surface charge, but on ion concentration (V (x) and the force charge
particle is experiencing close to the surface obviously depends on surface charge, equation
55). `B - distance between 2 like-charges, at which the electrostatic energy is equal to kBT

2. What are hydrophobic interactions? (10p)
Attractive interaction between hydrophobic groups/molecules in solution; entropic in na-
ture; gain in entropy of water molecules. Ordering of water molecules around hydrophobic
groups in solution (in order to maximize the number of H-bonds) reduces their entropy.
The total system entropy will increase if some of those molecules are realised due to
hydrophobic groups coming in contact (reduces hydrophobic area in contact with water).

3. What is defined by depletion force? Describe the origin of that phenomena. (10p) Deple-
tion force in a attractive force between large objects (for example large globular proteins)
in a presence of small molecules. Short range interaction. Entropic in origin. If two large
molecules are separated, each of them is surrounded by a small depletion zone which is not
accessible for small molecules. If two large molecules stick together, the total volume of
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that depletion zone is reduced and small molecules gain entropy. Inside the cell, depletion
force will promote interactions between large protein molecules - helps large molecules to
find each other.

Question 2: Polymer chins (35p) Imagine that you are able to stretch single protein molecule
from its native conformation to fully extended conformation by somehow holding to its chain
ends (for example with AFM, OT or magnetic tweezers). You are also able to monitor force
needed to increase the end to end distance. The experiment is done in buffer at pH = 7 and
the buffer concentration is c = 0.1M. The protein molecule is 35nm long (contains around 1000
amino acids).

Figur 1: Cheimcal structure of Polyethylene glycol (PEG).

Describe what you expect to see as you increase the separation. What kind of forces you will
have to overcome to increase end to end distance (hint: what forces are involve in stabilisation
of native conformation). What models with different degree of simplification could you use
to describe experimental observations. Describe those models and the assumption needed to
derive theoretical force/extension behaviour.

What will be the main difference if you replace protein molecule by a flexible hydrophilic
polymer like polyethylene glycol (PEG, see Figure 1 for chemical formula). Assume that you
stretch a polymer chain also 35nm long.

At low extension we have a situation which we could compare to RNA hairpin example, where
the molecule is unfolded “by force”. For the protein, we have a number of intermolecular interac-
tions (hydrogen bonds, hydrophobic interactions, S-S bonds, charge-charge interaction) which
stabilize native protein conformation and those will be broken when the end to end distance is
increased. This transition can be described by using difference in free energy between folded and
unfolded configuration. We can envisage this process as only one transition (only two molecular
states (conformations), folded at low force and unfolded at large enough force), or as a number
of transitions, where the protein unfolds in a number of steps (2 steps are illustrated in Fugure
2). Each of the unfolding steps will have ∆F0, i associated with it and at the force at which
protein unfolds ∆F0, i − f∆z = 0. At low extension (we do need to stretch the protein very
much to unfold native conformation), the force-extension curve will schematically look as the
left part of the drawing in Figure 2. When all intermolecular interactions (internal structures)
are broken, we can describe further stretching with a polymer model sutable for describing
force extension behaviour of a flexible polymer, for example FJC (1D model which is not really
correct, but illustrative, 3D-model or 3D-model with cooperativity, or one of the more complex
models). The main difference between the protein and PEG molecule is that there will be no
unfolding transition at low force, and whole force/extension curve can be represented by on
of our FJC models. Interaction between PEG molecule and the solvent will contribute to the
segment length we need to use to fit observed data to the predicted curve, but will not result
in any distinctive transitions as for the protein molecule.

Question 3 Transport along an axon(35p)

The axon is a fine, often very long, cable-like projection of a neuron that carries nerve signals.
The axon we study in the lab is 1m long, has a cylindrical cross-section and a diameter of 500nm
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Figur 2: Schematic force extension behaviour. The shape of the curve will depend on the experimental
conditions (for example, of we are precisly controlling extension or force).

(see Figure 3a). We would like to investigate transport of vesicles (100nm in diameter) which
are produced at the cell body and transported along the axon. Experimental observations show
that those move along the axon at 400mm/day.

(a) Anatomy of a neuron (b) Schematic illustration of a molec-
ular motor which is “powering“ flag-
ellum of a bacteria

Figur 3: Figures for Q3 and Q4

The vesicle concentration at one end of the tube (close to cell nucleus) is c0, and the concen-
tration is zero at axon terminal. Calculate and compare diffusive flux with the flux observed
experientially. If you discovered that vesicles are not moved by only passive diffusion but are
transported by molecular motors, calculate force which such a motor needs to delivered to
achieve experimentally observed transport speed of 400mm/day. Comment on the obtained
value.

First we need diffusion constant:

D =
kBT

6πηR
= 4.3× 10−12m2s−1
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Diffusive flux is given by

j = −D∂c

∂x
= −D−c0

L
= D

c0
L

The observed flux

jobs = vc0

So,

j

jobs
=

Dc0
vc0L

=
D

vL
=

4.3× 10−12 · 24 · 3600

0.4
= 9× 10−7

No points were deducted for those who used observed velocity of 400nm/day as stated in the
Norwegian version of the exam. Force which a motor has to deliver:

f = vζ = 6πηRv = 9.4× 10−10 0.4

24 · 3600
= 4.36× 10−15N = 0.004pN

This is very low force. If we remember that kBT = 4.1pN · nm (on the order of 0.5pN · 8nm−1),
then this can not be the real force generated by the motor, but more like a time average force.
Molecular motors typically deliver force in pN range. In our case, the vesicle is not moved at
constant velocity, but moves, then stops, then moves again. Motors typically make on the order
of 100 steps, then they detached form the track, before attaching again and continuing.

Question 4 (35p) Figure 3b shows a schematic illustration of a molecular motor which is “powering“
flagellum of a bacteria. Describe basic principle of how such motor could work based on a
concept of a ”ratchet“ and the principle of how chemical energy is converted into mechanical
work in such ”device“. Describe what are the requirements to use such simplification. Explain
how equations 64-67 can be used to describe this model in more quantitative way, that is,
predict speed as a function of load f .

We need to implement an S-ratchet concept in an enzymatic machine which will make use of
chemical energy in ATP. We make S-ratchet design circular (hinges on the outside). Once the
central part is rotating, the enzyme is moving down potential energy landscape, crossing small
local energy bariers. The chemical energy is used to ”reload“ the springs, so we never get to
a global energy minimum. Anisotropy of the design is used to direct Brownian motion and
once the motor is moving in one direction it can do useful work. For S-ratchet the maximum
velocity is a function of the diffusion constant of the motor (rotational diffusion in our case).
The average velocity as a function of load (or generated torque) can be derived from the
Smoluchowski equation - random walk on a potential energy surface. To solve it we need to
notice that for a ratchet, the flux of ”hinges” need to be independent on position along the
circular motor. The equation deals with the flux both in upwards and downwards direction
on the potential energy surface and the motor can cross energy barriers as long as they are
not much larger then kBT (which would be the case for high load). S-ratchet is not moving
constantly down the potential energy landscape but has to cross energy barriers borrowing
energy from the surrounding. The time motor needs to cross those barriers (waiting time) will
slow the motor down comparing to maximum velocity, and that time is an exponential function
of the load. Larger the load, larger the local energy barriers the motor will need to cross, slower
the velocity
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Appendix A: Equation Sheet

kB = 1.38× 10−23J K−1 (1)
e = 1.6× 10−19coul. (2)

ε0 = 8.9× 10−12F m−1 (3)
ηwater = 1× 10−3Pa s (4)

vdrift =
f

ξ
(5)

ξ = 6πηR (6)

ξD = kBT (7)

λX =
√

2Dt (8)

λ3D =
√

6Dt (9)〈
r2
〉

= NL2
seg (10)

D =
1

τ

∞∫
−∞

∆2

2
ρ(∆)d∆ (11)

2Dτ =
〈
∆2
〉

(12)

∂c

∂t
= D

∂2c

∂x2
(13)

js = −D ∂c

∂x
(14)

∂c

∂t
= − ∂j

∂x
(15)

js = −Ps∆c (16)

∂c

∂t
= D∇2c (17)

~j = −D∇c (18)

c(~r, t) =
N

(4πDt)3/2
e−

r2

4Dt (19)

j = D

(
− dc
dx

+
q

kBT
εc

)
(20)

∆ [ln c] = − q

kBT
∆V (21)

c (z) = Ce
−meffgz

kBT (22)

j (r) = D

(
−dc
dr

+
rω2meff

kBT
c(r)

)
(23)

c(r) = Ce
mnetω

2r2

2kBT (24)

vcrit =
η

ρR
(25)

fcrit =
η2

ρm
(26)

ffric =
η`3v

R2
(27)

finert =
ρm`

3v2

R
(28)

< =
vRρ

η
(29)

f

A
= −G∆z

d
(30)

f

A
= −η v

d
(31)

Q =
πR4p

8Lη
(32)

kBT

2
= α

〈
x2
〉

2
(33)

S ≡ kB ln Ω (34)

T−1 =

(
dS

dE

)
(35)

∆U = ∆Q+ ∆W (36)

∆S ≥ ∆Q

T
(37)

Fa ≡ Ea − TSa (38)

Ga ≡ Ea + pVa − TSa (39)

P1

P2
= e

∆E
kBT (40)

P1 =
1

1 + e
− ∆E
kBT

(41)

P2 =
1

1 + e
∆E
kBT

(42)

τ−1 = Ce
−∆E‡
kBT

(
1 + e

−∆E
kBT

)
(43)

∆F = ∆F0 − f∆z (44)

Z =
∑
j

e−Ej/kBT (45)

pequil = cosmkBT (46)
cosm = ϕMc (47)

Σ = Rp/2 (48)

`B ≡
e2

4πεkBT
(49)

V (x) =
eV (x)

kBT
(50)

c+(x) =
2π`B

(σq
e

)2(
1 + 2π`B

σq
e x
)2 (51)

x0 =

(
e

2π`Bσq

)
(52)

d2V

dx2
= −4π`Bc0e

−V (53)

λD = (8π`Bc∞)
− 1

2 (54)

V (x) = −σqλD
ε

e
− x
λD (55)

λD = 0.31[NaCl]−1/2 (56)

E

A
≈ kBT

(σ
e

)
(57)

E

A
≈ kBT

(σ
e

)2

2πλD`B (58)

f = 2kBTb
2r b2 ∝ 1

nl2
(59)

〈z/Ltot〉 = tanh
(
fL(1d)

seg /kBT
)

(60)

〈z/Ltot〉 = coth (fLseg/kBT )−
− (fLseg/kBT )

−1 (61)

〈z/Ltot〉 =
sinhα√

sinh2 α+ e−4γ
(62)

α ≡ f`

kBT
α ≡ ∆G

−2kBT

(63)

j(x) = cvdrift −D
dc

dx
(64)

j(1D) = −MD

(
dP

dx
+

1

kBT
P

dUtot
dx

)
(65)

0 =
d

dx

(
dP

dx
+

1

kBT
P

dUtot
dx

)
(66)

v =

(
f L

kBT

)2 D

L

(
efL/kBT − 1−

f L

kBT

)−1

(67)


