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Problem 1.           Bead on a rotating rod               (30%) 

  

 

 

  

 Fig 1.   A bead is attached to a rotating rod. The position of the bead is determined by its 

distance to the origin: 𝑙 = √𝑥2 + 𝑦2,  and by the angle 𝜃.  Notice that 𝜃 = 𝜔𝑡. 

 

 

       A bead of mass M is attached to a rod, and slides without friction along the rod.    

The rod is in the xy-plane and is rotating with a constant angular velocity 𝜔.  The distance 

between the bead and the origin is 𝑙. We assume that the rod is very long, such that the distance 𝑙 
can take any positive value in the following calculations.     

At time t=0 we have:   𝑙 = 𝑙0   and   
𝑑𝑙

𝑑𝑡
= 0.    

   

1a)   Assume first that there are no gravitational forces on the bead.  Write down the Lagrangian 

        L for the bead. 

1b)   Write down the Lagrange equations and find the solution 𝑙(𝑡).    Show that when 𝑡 ≫
1

𝜔
     

         the solution is approximately:    

                                                                            𝑙(𝑡) ≈
𝑙0

2
𝑒𝜔𝑡 

1c)  We now assume that the bead is in a uniform gravitational field 𝑔⃗ = −𝑔𝑒𝑦.   Write down the  

       Lagrangian L for the bead.    

1d)  Write down the Lagrange equation associated with the Lagrangian in point 1c).     

        Look for a solution of the form: 

                                                                     𝑙(𝑡) = 𝐶1𝑒𝜔𝑡 + 𝐶2  𝑒
−𝜔𝑡 + 𝐶3 sin(𝜔𝑡) 

        Determine the constants 𝐶1, 𝐶2, 𝐶3. 

1e)    If the rod is rotating fast, the bead will move away from the origin (x=0,y=0).  However if 

         the rotation is slow, the bead will fall to the origin, which correspond to  𝑙 = 0. 

         Argue that when   𝜔2 <
𝑔

2𝑙0
   ,  the  bead must reach the origin after some time. 

 

 

 

 

 

 



 

Problem 2.      Particle in a harmonic central force potential        (30%) 

 

Consider a particle of mass M in two dimensions. The particle is in a harmonic central force 

potential: 

𝑉 =
𝐾

2
(𝑥2 + 𝑦2) 

where K is a constant.  In polar coordinates ( 𝑥 = 𝑟 cos(𝜃)  and 𝑦 = 𝑟 sin(𝜃)  ) the potential is:  
 

                                                                𝑉 =
𝐾

2
𝑟2 

 

 

2a)    Write down the Lagrangian L=T - V   for the particle (in polar coordinates).  

2b)    Show that the Lagrangian L has a corresponding conservation law.  What is the conserved 

         quantity?  

2c)    Write down the total energy.  Use the fact that the energy is conserved, and find an 

         expression for   
𝑑𝜃

𝑑𝑟
   as function of r.  

         Hint: Use the conservation law found in 2b)  

 

2d)   Solve the differential equation in 2c) and  show that there exist particle trajectories  

        (bound orbit solutions) of the form:  

𝑟 =
𝐴

√1 + 𝐵 𝑐𝑜𝑠(2𝜃)
 

        where A and B are constants (to be determined).  

        Hint: Make a substitution  𝑢 =
1

𝑟2 .         

         Useful integral: 

∫
𝑑𝑢

√𝛼 + 𝛽𝑢 + 𝛾𝑢2
=

1

√−𝛾
arccos[−

𝛽 + 2𝛾𝑢

√𝛽2 − 4𝛼𝛾
  ] 

2e)   Show that the particle trajectory found in 2d) is in an ellipse: 

 

(
𝑥

𝑎
)

2

+ (
𝑦

𝑏
)

2

= 1 

        where a and b are constants (to be determined). 

 

       

 

 

 

 

 

 

 



 

 

Problem 3.   Rotation of a free body using the Euler angles               (30%) 

 

   We consider a free rigid body (no external forces acting on the body).    The laboratory frame 

   coordinates are (𝑥, 𝑦, 𝑧),  and the coordinates of the rotating body frame are (𝑥′, 𝑦′, 𝑧′).    The 

   body coordinate system is fixed in the body (by definition). We shall use the Euler angles to 

   describe the rotational motion of the body.    

 

3a)  The angular momentum in the laboratory frame is 𝐿⃗⃗ = 𝐿𝑒𝑧 . Use Euler angle rotation to show 

       that the components of the angular momentum in the body frame is: 

 

                                                            𝐿𝑥′ = 𝐿 sin(𝜃) sin(𝜓) 

                                                            𝐿𝑦′ = 𝐿 sin(𝜃) cos(𝜓) 

                                                            𝐿𝑧′ = 𝐿 cos(𝜃) 
 

 

 

3b)  We now fix the body coordinate system such that (𝑥′, 𝑦′, 𝑧′)   are aligned with the principal 

       axis of the body.  This implies that moment of inertia tensor (matrix) is diagonal: 
𝐿𝑥′ = 𝐼1𝜔𝑥′ 

𝐿𝑦′ = 𝐼2𝜔𝑦′ 

𝐿𝑧′ = 𝐼3𝜔𝑧′ 

      where  𝐼1, 𝐼2, 𝐼3   are the principal moment of inertia of the body.     Consider the special case 

      𝐼1 = 𝐼2  ≠ 𝐼3    (axi-symmetric body) and show that the solution for the Euler angles of the  

      rotating body has the form: 
𝑑𝜃

𝑑𝑡
= 𝑐1 

𝑑𝜑

𝑑𝑡
= 𝑐2 

              
𝑑𝜓

𝑑𝑡
= 𝑐3 cos(𝜃) 

      where 𝑐1, 𝑐2, 𝑐3 are constants. Determine these constants. 

 

3c)  Show that the vector:  𝑤⃗⃗⃗ = 𝜔𝑥′ 𝑒𝑥′ + 𝜔𝑦′ 𝑒𝑦′    rotates with a constant angular velocity Ω.  

        Express Ω as a function of 𝐼1 and  𝐼3 

 

3d)   Show that the solution in 3b) is a solution of the Euler equation for a free body. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Problem 4.                            Light in a moving medium   (10%) 
 

          Light that goes through water has a lower speed than the vacuum light speed c.  

      If water is set into motion relative to the lab frame, the speed of light will change relative to 

      the lab frame. 

 

4a)  Consider a uniform water flow with velocity 𝑣  in the z-direction. Let S be the lab  

       coordinate system, and S’ be the coordinate system moving with the same speed as the water 

       flow.  The speed of light in the S’ system is  𝑢′  (in z-direction), and in the S system the 

speed of light is 𝑢  (in z-direction). 

      

       Use the Lorentz transformations to find 𝑢   as a function of  𝑢′.    
 

4b)  The speed of light in S’   is  𝑢′ =
𝑐

𝑛
 , where c is the light speed in vacuum and n the 

       refractive index of water.   

 

       Show that for 𝑣 ≪ 𝑐  the light speed measured in the laboratory frame is: 

 

                                                             𝑢 ≈
𝑐

𝑛
+ (1 −

1

𝑛2) 𝑣 

                 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary information 

Rotation around Euler angle 𝜑  (rotation around z-axis): 

 

𝐷 = [
cos(𝜑) sin(𝜑) 0

− sin(𝜑) cos(𝜑) 0
0 0 1

] 

Rotation around Euler angle 𝜃 : 

𝐶 = [

1 0 0
0 cos(𝜃) sin (𝜃)
0 −sin (𝜃) cos (𝜃)

] 

 

Rotation around Euler angle 𝜓  :  

𝐵 = [
cos(𝜓) sin(𝜓) 0

− sin(𝜓) cos(𝜓) 0
0 0 1

] 

 

Transformation from laboratory frame to body frame by Euler angle rotations: 

 

[
𝑥′
𝑦′

𝑧′

] = 𝐵𝐶𝐷 [
𝑥
𝑦
𝑧

] 

------------------------------------------------------------------------------------------------------------------ 

Angular velocities in body frame: 

                                                               𝜔𝑥′ = 𝜑̇ sin(𝜃) sin(𝜓) + 𝜃̇ cos(𝜓) 

                                                               𝜔𝑦′ = 𝜑̇ sin(𝜃) cos(𝜓) − 𝜃̇ sin(𝜓) 

                                                               𝜔𝑧′ = 𝜑̇ cos(𝜃) + 𝜓̇ 
----------------------------------------------------------------------------------------------------------------- 

Euler equation for a free body (zero external torque) :           

     

                                                          (
𝑑𝐿⃗⃗

𝑑𝑡
)

𝑏𝑜𝑑𝑦
+  𝜔⃗⃗⃗ × 𝐿⃗⃗ = 0 

----------------------------------------------------------------------------------------------------------------- 

Lorentz transforms between a reference system S’ moving with a constant velocity 𝑣 in the z-

direction, with respect to a reference system S:  

 

𝑥′ = 𝑥 

𝑦′ = 𝑦 

𝑧′ = 𝛾(𝑧 − 𝑣𝑡) 

𝑡′ = 𝛾(𝑡 −
𝑣𝑧

𝑐2
) 

𝑥 = 𝑥′ 

𝑦 = 𝑦′ 

𝑧 = 𝛾(𝑧′ + 𝑣𝑡′) 

𝑡 = 𝛾(𝑡′ +
𝑣𝑧′

𝑐2
) 

𝛾 =
1

√1 −
𝑣2

𝑐2

 


