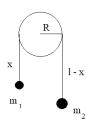

TFY4345 Classical Mechanics Exam November 27, 2023

A) 3 B) 4 C) 5 D) 6 E) 7 F) 8


Part I (2.5 points for each correct answer. Answer Part I in the table in Inspera.)								
1.1 The co	onstraint $r =$	$= \sqrt{x^2 + y^2} \text{ for}$	or a particle	sliding	on a r	ing of rad	ius r is calle	ed
A) conserv	ative B)	holonomic	C) canon	C) canonical		rariant	E) cyclic	F) virtual
1.2 What is the value of the element ε_{321} of the Levi-Civita tensor?								
A) 1	B) -1	C) i	D) $-i$	E) 0	F) π		
1.3 What i	is the SI uni	it of the conj	ugate mome	entum t	to the p	olar angle	e θ?	
B) The sar	ne unit as fo	or angular m or power or acceleratio						
1.4 If the system Lagrangian is independent of a coordinate q , this coordinate is called								
A) conserv	ative B)	holonomic	C) canon	ical	D) invariant		E) cyclic	F) virtual
	$y^2, x = r \cos x$							e, k is a positive constant, lenergy) is conserved for
A) p_x	B) p_y	C) v_x	D) v_y	E) <i>p</i>	$\partial heta$	F) None		
		cles moving i			_	_		e independent holonomic stem?

1.7 A triple planar pendulum consists of three balls (point masses) connected by two massless rods of fixed length, and by a third massless rod to the support at A, which may slide without friction in the x direction. The balls are allowed to move in the xy plane. How many independent coordinates q_j are needed to describe this system?

- A) 3 E
- B) 4
- C) 5
- D) 6
- E) 7
- F) 8

1.8 Two balls (point masses m_1 and m_2) are connected with a massless rope of length $\ell + \pi R$ that can slide without friction over a cylinder with radius R. Zero potential is chosen at the centre of the cylinder, a distance x above m_1 . What is the Lagrangian L = T - V for this system?

A)
$$L = \frac{1}{2}(m_1 - m_2)\dot{x}^2 + (m_1 - m_2)gx + m_2g\ell$$

B)
$$L = \frac{1}{2}(m_1 - m_2)\dot{x}^2 + (m_1 + m_2)gx + m_2g\ell$$

C)
$$L = \frac{1}{2}(m_1 + m_2)\dot{x}^2 + (m_1 - m_2)gx + m_2g\ell$$

D)
$$L = \frac{1}{2}(m_1 + m_2)\dot{x}^2 + (m_1 + m_2)gx + m_2g\ell$$

E)
$$L = \frac{1}{2}(m_1 + m_2)\dot{x}^2 + (m_1 - m_2)gx + (m_1 + m_2)g\ell$$

F)
$$L = \frac{1}{2}(m_1 + m_2)\dot{x}^2 + (m_1 - m_2)gx + (m_1 - m_2)g\ell$$

1.9 A particle with mass m and charge q moving in an electromagnetic field has the Lagrangian

$$L = \frac{1}{2}m\dot{x}_j\dot{x}_j + qA_j\dot{x}_j - q\phi.$$

What is the canonical momentum p_2 ?

- $A) p_2 = q\dot{x}_2 + mA_2$
- B) $p_2 = m\dot{x}_1 qA_3$
- C) $p_2 = \dot{x}_2 A_2$
- D) $p_2 = 2m\dot{x}_2 + qA_2$
- E) $p_2 = 2m\dot{x}_2 + qA_2/2$
- F) $p_2 = m\dot{x}_2 + qA_2$
- **1.10** If the vector potential is $\mathbf{A} = B_0(x\hat{y} y\hat{x})$, what is the magnetic field \mathbf{B} ?

- A) $\mathbf{B} = B_0 \hat{z}$ B) $\mathbf{B} = 2B_0 \hat{z}$ C) $\mathbf{B} = (B_0/2)\hat{z}$ D) $\mathbf{B} = 4B_0 \hat{z}$ E) $\mathbf{B} = (B_0/4)\hat{z}$ F) $\mathbf{B} = 0$
- **1.11** If the vector potential is $\mathbf{A} = E_0 t \hat{x}$ and the scalar potential is $\phi = E_0(y+z)$, what is the electric field \mathbf{E} ?

- A) $\mathbf{E} = -E_0 \hat{x}$ B) $\mathbf{E} = -E_0 (\hat{y} + \hat{z})$ C) $\mathbf{E} = -E_0 (\hat{x} + \hat{z})$ D) $\mathbf{E} = -E_0 (\hat{x} + \hat{y})$ E) $\mathbf{E} = -E_0 (\hat{x} + \hat{y} + \hat{z})$ F) $\mathbf{E} = 0$
- **1.12** If the Lagrangian for a system with two independent coordinates q_1 and q_2 is

$$L = c_1 q_1^2 + c_2 q_2^2 + c_3 q_1 \dot{q}_1 + c_4 \dot{q}_2^2,$$

what is the canonical momentum p_1 ?

- A) $p_1 = c_1 q_1$
- B) $p_1 = c_2 q_1$ C) $p_1 = c_3 q_1$ E) $p_1 = c_2 q_2$ F) $p_1 = c_3 q_2$

- D) $p_1 = c_1 q_2$

- 1.13 A planet moves in an elliptical orbit with eccentricity 0.21 around a much heavier star located at the origin. What is the ratio r_{\min}/r_{\max} between the shortest and longest distance from the planet to the star?
- A) 0.45
- B) 0.55
- C) 0.65
- D) 0.75
- E) 0.85
- F) 0.95

1.14 Which transformation matrix describes rotation an angle ϕ counterclockwise around the x_2 axis?

A)
$$\begin{pmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{pmatrix}$$

B)
$$\begin{pmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & -\cos \phi \end{pmatrix}$$

C)
$$\begin{pmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{pmatrix}$$

D)
$$\begin{pmatrix} \sin \phi & 0 & -\cos \phi \\ 0 & 1 & 0 \\ \cos \phi & 0 & \sin \phi \end{pmatrix}$$

E)
$$\begin{pmatrix} -\sin\phi & 0 & -\cos\phi \\ 0 & 1 & 0 \\ \cos\phi & 0 & \sin\phi \end{pmatrix}$$

F)
$$\begin{pmatrix} -\cos\phi & 0 & -\sin\phi \\ 0 & 1 & 0 \\ -\sin\phi & 0 & -\cos\phi \end{pmatrix}$$

1.15 A spaceship moves with speed 7c/8 relative to Spaceman Spiff, who is at rest on Anhooie-4. The alien Hideous Blob is shot out of the spaceship, in the forward direction, with speed 5c/6 relative to the spaceship. What is the speed of Hideous Blob as observed by Spaceman Spiff?

- A) 82c/83
- B) 6c/7

- C) 41c/24 D) 7c/8 E) 35c/48 F) c/3

1.16 The acceleration a_b of an object measured by a stationary observer at the Equator on the surface of the Earth is

$$a_b = a_s + 2v_b \times \omega - \omega \times (\omega \times r).$$

Here, v_b and r are the velocity and the position of the object, respectively, both measured by this observer, and a_s is the acceleration measured in an inertial system. Assume a spherical Earth with radius r = 6378km rotating around an axis pointing straight north, with a period $T=2\pi/\omega=24$ hours. The observer throws a ball upwards with an initial speed 15 m/s. At this instant, what is the Coriolis acceleration?

- A) 5.5 mm/s^2

- B) 4.4 mm/s^2 C) 3.3 mm/s^2 D) 2.2 mm/s^2 E) 1.1 mm/s^2
- F) 0.55 mm/s^2

1.17 At the instant described in the previous question, what is the centrifugal acceleration?

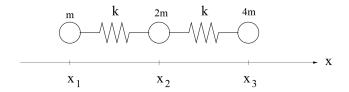
- A) 64 mm/s^2 B) 54 mm/s^2 C) 44 mm/s^2 D) 34 mm/s^2 E) 24 mm/s^2
- F) 14 mm/s^2

1.18 What is the mass of a (free) particle with energy 500 MeV and momentum 400 MeV/c?

- A) 50 MeV/ c^2
- B) $100 \text{ MeV}/c^2$
- C) 150 MeV/ c^2 F) 300 MeV/ c^2

- D) 200 MeV/ c^2
- É) 250 MeV/ c^2

1.19 In a canonical transformation of type 1, from "old" coordinates (q, p) to "new" coordinates (Q, P), the generating function is $F = F_1(q, Q) = qQ - q^2 - Q^2$. What is P(q, p)?


- A) P=q-p B) P=4q+3p C) P=q+p D) P=2q-2p E) P=4q-3p F) P=3q+2p

1.20 What is most likely a key ingredient in Unni's Cinnamon Cake?

- A) Anise
- B) Basil
- C) Cinnamon
- D) Dill
- E) Estragon
- F) Fennel

Part II (Weights are given for each of the 8 partial questions)

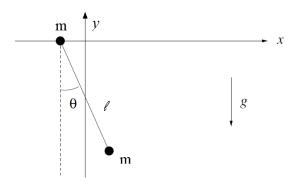
2 (20%) Three balls with masses m, 2m and 4m (m = 50 g) are connected by identical and ideal springs with spring constant k = 150 N/m, as shown in the figure above. The balls can move along the x axis only, and we consider small oscillations around their equilibrium positions x_{01} , x_{02} and x_{03} .

a) (7%) With the balls' deviations from equilibrium, $\eta_i = x_i - x_{0i}$, as coordinates, the potential V and kinetic energy T are both quadratic forms,

$$V = \frac{1}{2}V_{ij}\eta_i\eta_j$$
 and $T = \frac{1}{2}T_{ij}\dot{\eta}_i\dot{\eta}_j$,

respectively. Determine the 3×3 symmetric matrix V and diagonal matrix T, with matrix elements V_{ij} and T_{ij} .

b) (7%) Solve the secular equation


$$\left| \boldsymbol{V} - \omega^2 \boldsymbol{T} \right| = 0$$

(i.e., zero determinant) and determine the two nonzero eigenfrequencies $f_j = \omega_j/2\pi$ (j = 1, 2) of this system. (Determine both numerical values and units.)

Hint: You will end up with a 3rd order equation for ω^2 , where one root is $\omega^2 = 0$. You may find it convenient to extract a factor k^3 from the determinant and introduce the dimensionless variable $\alpha = m\omega^2/k$.

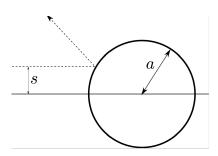
c) (6%) Determine the amplitudes (i.e., relative amplitudes, including sign) of the three balls in the normal mode with the *smallest* eigenfrequency.

3 (25%) A rod with negligible mass and length ℓ has equal masses m at its two ends. (See figure below.) One mass can slide without friction along a horizontal constraint on the x axis. The other mass is restricted to move in the xy plane. We consider a situation where the center of mass is all the time located on the y axis, i.e., in x = 0. Zero potential energy is chosen in vertical position y = 0.

a) (7%) Show that the Lagrangian of the system is

$$L(\theta, \dot{\theta}) = T - V = \frac{m\ell^2 \dot{\theta}^2}{4} (1 + \sin^2 \theta) + mg\ell \cos \theta.$$

Hint: $a \sin^2 x + b \cos^2 x = b + (a - b) \sin^2 x$.


b) (7%) Find the equation of motion (i.e., the Lagrange equation).

c) (5%) If the oscillation amplitude is small, the system is a harmonic oscillator. Show this by including only linear terms in the equation of motion, and determine the oscillation frequency ω .

d) (6%) Find the Hamiltonian $H = p_{\theta}\dot{\theta} - L$ expressed as a function of the canonical variables θ and p_{θ} .

4 (5%) A point particle moving in two dimensions collides with a hard disk with radius a. If the impact parameter is $s = a/\sqrt{2}$, what is the scattering angle θ ?

The general situation is illustrated in the figure below. The scattering angle θ is defined as the angle between the point particle's incoming and outgoing direction.

