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Suggested solution for Exam TFY4345: Classical Mechanics

NOTE: The solutions below are meant as guidelines for how the problems may be solved and
do not necessarily contain all the detailed steps of the calculations.

PROBLEM 1

(a) See compendium http://folk.ntnu.no/jacobrun/spring2011/comp.pdf pages 47-48.

(b) See compendium http://folk.ntnu.no/jacobrun/spring2011/comp.pdf pages 90-91 and 95.

(c) See compendium http://folk.ntnu.no/jacobrun/spring2011/comp.pdf pages 25-29.

(d) See compendium for the basic postulates. As for the particle collision, we use conservation of 4-momentum to solve this
problem. We have that:

Pµ = p1µ + p2µ (1)

where piµ is the 4-momentum of the two colliding particles (with velocities v and −v since it is the center of mass frame) and Pµ
is the 4-momentum of the created particle m′. The particle m′ is at rest so we obtain:

(0, iE/c) = (p1 +p2, iE1/c+ iE2/c). (2)

It follows from conservation of energy (the fourth component of the 4-vector) that:

2γmc2 = m′c2, (3)

since E = m′c2 and Ei = γmc2. Therefore, m′ = 2γm where γ = 1/
√

1− (v/c)2.



PROBLEM 2

(a) Energy conservation dictates that E = mẋ2/2+ γx4/4. The turning points in the motion occur when ẋ = 0 which we assume
happens at x =±x0, so that E = γx4

0/4. The period of the motion T is then equal to 4 times the time Tx0 required for the system
to go from x = 0 to x = x0:

T = 4
∫ Tx0

0
dt = 4

∫ x0

0

dx√
2(E−V )/m

= 4
√

2m/γ
1
x2

0

∫ x0

0

dx√
1− (x/x0)4

' 7.42
√

m/γ

(
γ

4E

)1/4
(4)

after performing the integral (listed in the Supplementary Information).

(b) Obtaining the equations of motion for the Lagrangian yields:

ẍ+
ḣ
h

ẋ+ω
2x = 0, (5)

so that ḣ/h = λ must be satisfied. With initial condition h(0) = 1, the solution is h(t) = eλt .

(c) To construct the Hamiltonian H = ẋp−L, we must eliminate ẋ in favor of p according to p = ∂L/∂ẋ. We obtain p = h(t)mẋ,
so that:

H = e−λt p2

2m
+ eλt mω2x2

2
. (6)

This Hamiltonian has an explicit time-dependence and is therefore not conserved.

(d) The transformation equations dictated by the generating function F2 are listed in the Supplementary Information:

p = ∂F2/∂x, X = ∂F2/∂P, K = H +∂F2/∂t. (7)

Using these equations, we find an expression for p and x in terms of P and X , which provides us with:

K =
P2

2m
+

mω2X2

2
+ γXP. (8)

There is no explicit time-dependence here, and the Hamiltonian is conserved.
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PROBLEM 3

(a) The moment of inertia around the pivot point where the rod is attached may be written as the sum of the moment of inertia
due to the rod itself and the snail:

I = Irod + Isnail = ML2/3+ml2. (9)

The Lagrangian L = T −V is then:

L = Iθ̇
2/2+mv2/2− (−MgcosθL/2−mgcosθl). (10)

We have defined θ as the angle between the rod and the line defined by the rod hanging at rest (vertically, meaning θ = 0). Since
v is a constant, the second term above may simply be discarded. For the potential energy, we have chosen the reference level
(V = 0) to be at the height of the pivot θ = π/2. We then obtain the Lagrange-equations via:

d
dt

∂L
∂θ̇

=
∂L
∂θ

. (11)

Inserting our L, we obtain:

Iθ̈+
dI
dt

θ̇ = sinθ(−MgL/2−mgl). (12)

Note that the moment of inertia I is time-dependent here since the position of the snail on the rod is time-dependent. We find:

dI/dt = 2mll̇, (13)

where l̇ = v. Thus, the final result for the equation of motion is:

(ML2/3+ml2)θ̈+2mlvθ̇+ sinθg(ML/2+ml) = 0. (14)

(b) Let η1,2 denote the displacement of the masses from their equilibrium position. The Lagrangian then reads:

L =
1
2

m(η̇2
1 + η̇

2
2)−

1
2
[kη

2
1 + kη

2
2 +3k(η1−η2)

2] (15)

The first two terms in the potential energy part correspond to the potential energy due to the stretching/compression of the
two springs with constants k. The third term in the potential energy part corresponds to the potential energy due to stretch-
ing/compression of the spring with constant 3k, which depends on the relative displacement η1−η2 between the masses. The
eigenfrequences are computed as the solution of the equation det(V̂ −ω2T̂ ) = 0, where V̂ and T̂ are the potential and kinetic
energy matrices. The elements of these matrices are identified from the form of the Lagrangian, and due to the cross-product
terms ∼ η1η2 in L, V̂ will have off-diagonal terms. We find that

V̂ −ω
2T̂ =

(
4k−ω2m −3k
−3k 4k−ω2m

)
(16)

so that the determinant equation gives two solutions:

ω =
√

k/m and ω =
√

7k/m. (17)


