Classical Mechanics TFY4345 - Exam 2016

1.
(1a)

Position of the center of the wheel:

Position of point mass m:

x = bl —0bsinf
= b—bcosh
Velocity of mass M: _ . .
V2=X?4Y?=b?
Velocity of mass m:
v? =@ 4 % = b?6%(1 — cos §)? + b26% sin? § = 2b%6%(1 — cos h)
(1b)
Lagrangian:
Loy 1 2
L = —mv°+ -MV*"—mgy
2 2
. 1 .
= mb*0*(1 — cos ) + EMbQHQ — mgb(1 — cos0)
(1c)

Lagrange equation:
doL 0L

dtog 00

Inserting equation (8) into (9) gives the equation of motion:

2mb(1 — cos 0) + Mb + mbf?sin 6 + mgsin 6 = 0

(1d)
Linearising equation (10) gives:
. mg
0+ —0=0
T
which gives harmonic oscillations with frequency:
myg
Ww=4/—
Mb

2a)
1 . K
L:T—V:—m(f2+r292) 2
2 76
2b) The Lagrangian does not depend on 6:
oL

%:O

(10)

(11)

(12)

(13)



This implies the conservation law:

L
a—. = constant (15)
a0

mr?0 = constant = ¢ (16)

The conserved quantity is the angular momentum of the particle.
2¢) We may derive the equation of motion from the conservation of angular momentum and from the
Lagrange equation:

awor o 0 (17)

It is however easier to derive the equation of motion from conservation of total energy (as in the
Kepler problem). The total energy is:

1 : K
E=T+V =om(i*+r%) - 2 (18)
We can eliminate 6 by using Eq. (16) on conservation angular momentum conservation:

1, # K

E=— - 1
2" + 2mr?2 1S (19)
Solving for 7 and using the angular momentum law once more gives:
dr  mr? [2F 2 2K
o= - 20
do 1 m  m2r? * mr6 (20)
2d) We may express the left term in Eq. (20) as % = L (;2). Inserting 7 = ¢? cos 26 in Eq. (20)
we find after some algebra that:
(c** — 2Km) — 2¢°mE cos® (20) = 0 (21)
This implies that r = ¢v/cos 20 is a solution provided that
E =0 (22)
2mK
= % (23)

i.e. the total energy is £ = 0.
2e) Combining the solution r = ¢v/cos 20 with the equation of conservation of angular momentum
gives:

dé
(= mr2a = (dt = mc? cos (26)df (24)
Integrating this equation gives
(t = mc*sin (20) (25)

Which gives:
1 2
0(t) = 5 arcsin (—gt) (26)

mc?

2f) At time ¢ = 0 the particle starts in the position r = ¢ and § = 0. The particle moves towards the
origin, corresponding to the position r = 0, which implies § = 7. Therefore 0 < 6 < 7 corresponds
to a quarter of a orbit (orbital period 7) This implies

20 T
a1 ! (27)

2



according to Eq. (26). The total orbital period is:

2mec:  2m

3.
3a)
The Euler equation free body (no torque):
dL .
(E) +OxL=0 (29)
body

From Eq. (29) we find the Euler equation on component form:

Lw,y + wy/wy/(lg — ]2) =0 (30)

IQdJy’ + wx/wzr(ll - Ig) =0 (31)

Lw, + wx/wy/(IQ - Il) = 0 (32)
Angular velocities in body frame:

Wy = @sinfsing + 6 cos (33)

wy = @sinfcost — fsinp (34)

wy = ¢cosl+ (35)

3b) When I} = I, Eq. (32) implies that w,, = constant. This again implies that the angular
momentum around z’ axis body frame is constant, i.e. L, = L cos# = constant, which implies

¢ = constant (36)
,ie. §=0. Eq. (30) and (31) can now be expressed as:

C:UI/ = —wa/ (37)
b'dy/ = wal (38)

with € = L‘I—:hwzz = constant. This implies ! that w? + ws, = constant. Which in turn implies:
w2 + wz, = (¢sinfsin)® 4 (psinfcos)? = ¢ sin @ = constant (39)

We thus find that:
p=0c (40)

where ¢; is a constant. Inserting Eq. (33) and (34) into Eq. (37) and (38) gives

¢sinfcost) = —Q¢sindcosp (41)
—¢sinfsing = Qpsinfsiny (42)
This implies that
, (Is—-1) , 1 1
(0 T W, L L cos 6 (43)

!'Using Eq. (37) and (38) we find: $ [w? + w?]| = 2wartpr + 2wy @y = —2Qwpwy + 20wy w,r = 0 which shows

that w?, + wi, does not change with time.



Inserting Eq. (43) into Eq. (35) gives

- L
°T1
3c)
P _ Y _ L/1 Iz I _o
w,  Lecos(0)/I3 Lcos(6)/I3 Iicos® I,
4a)

Using the Lorentz transformation for the endpoints of the rod gives:

!/

2y — 21 = V(22 — vt) — (21 —vt) = y(22 — 21)

r 2
L===1/1-%
y c

Which implies

4b)
Ll /
L, = — = —cosby
8 8
L, = L,=L'sint
2
=L+ L}=1L" (1 — cos” 90)
4c)
L L
L—Z = S Lyz = tan 6,
which implies:
tan g

(44)

(45)



