
Classical Mechanics TFY4345 - Exam 2016

1. Motion of a particle confined to a surface
1a)
Position of the particle on the cylinder:

~r = R cos (φ)~ex +R sin (φ)~ey + z~ez (1)

Velocity:

~v2 =

(
d~r

dt

)2

(2)

= R2φ̇2 + ż2 (3)

(4)

Potential energy:
V = mgz (5)

Lagrangian:

L = T − V =
1

2
mv2 −mgz =

1

2
m
(
R2φ̇2 + ż2

)
−mgz (6)

1b)
Lagrange equations:

d

dt

∂L

∂φ̇
=
∂L

∂φ
(7)

d

dt

∂L

∂ż
=
∂L

∂z
(8)

which implies the conservation law :

d

dt

(
mR2φ̇

)
= mR2φ̈ = 0 (9)

This implies that the angular velocity is a constant φ̇ = ω0 = constant. Equation of motion for the
z-coordinate:

mz̈ = −mg (10)

1c) At time = 0 the velocity in the z-direction is zero, and the total velocity is then v = v0 = ω0R,
where ω0 is constant. The solution for the φ and z coordinates:

φ = ω0t (11)

z = z0 −
1

2
gt2 (12)

This is a helice where the pitch increases with time.

x = R cos (ω0t) (13)

y = R sin (ω0t) (14)

z = z0 −
1

2
gt2 (15)
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1d) Spherical coordinates for a particle confined to the surface of a cone:

x = r sin (θ) cos (φ) (16)

y = r sin(θ) sin (φ) (17)

z = r cos (θ) (18)

The motion of the particle on the cone can be described by these spherical coordinates setting
θ = α = constant.
Lagrangian for the particle on the cone :

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
− V (19)

=
1

2
m
[
ṙ2 + r2φ̇2 sin2 (α)

]
−mgr cos (α) (20)

1e)
Lagrange equations:

d

dt

∂L

∂φ̇
=
∂L

∂φ
(21)

d

dt

∂L

∂ṙ
=
∂L

∂r
(22)

Inserting the Lagrangian in equation (20) into equations (21) and (22) gives :

mr2φ̇ = constant = ` (23)

mr̈ = mrφ̇2 sin2 (α)−mg cos (α) (24)

1f) The angular frequency of the particle is ω = φ̇, stable motion implies r̈ = 0, and equation (24)
implies:

ω = φ̇ =

√
g cos (α)

r sin2 (α)
=

√
g cos (α)

R sin (α)
(25)

1g) Combining the conservation law and equation of motion gives:

r̈ = −g cos (α) +
`2

r3 sin2 (α)
(26)

We now look at small perturbation around the stable motion: r = r0 + δ(t), where r0 is the radius
of the stable motion in question 1f), i.e. r0 = R/ sin (α) Expanding to linear order in δ gives

δ̈ = − 3`2

r4
0 sin2 (α)

δ = −3 sin2 (α)ω2δ (27)

Which means that the frequency of the oscillatory motion is:

Ω =
√

3 sin (α)ω (28)

We therefore get that ω = Ω when sinα = 1√
3
, i.e. α ≈ 35, 2◦
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2. Particle in a central force potential
2a)

d

dt
~L = ~N (29)

Central force implies zero torque:

~N = ~F × ~r = −∇V (r)× ~r = −V ′(r)~er × ~r = 0 (30)

This implies d
dt
~L =, i.e. conservation of angular momentum. Which means that the particle stays in

the same plane.
2b) Velocity:

v2 = ẋ2 + ẏ2 = ṙ2 + r2φ̇2 (31)

Lagrangian:

L = T − V =
1

2
m
(
ṙ2 + r2φ̇2

)
+
k

r4
(32)

L does not depend on φ, which gives the conservation law

∂L

∂φ̇
= mr2φ̇ = constant = ` (33)

This is the angular momentum. In addition the Lagrangian does not depend on time, which implies
conservation of energy.
2c)

Lagrange equation for r coordinate:

mr̈ = mrφ̇2 − 4
k

r5
(34)

Using the conservation of angular momentum:

mr̈ = mrφ̇2 − 4
k

r5
=

`2

mr3
− 4

k

r5
(35)

This is equivalent to a 1D problem:

mr̈ = −dVeff

dr
(36)

Veff =
`2

2mr2
− k

r4
(37)
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2d)

Figure 1: Sketch of potential Veff = `2

2mr2 − k
r4 as a function of r. For small r the negative term − k

r4

dominates, for large r the postive term `2

2mr2 dominates.

2e) r = constant implies r̈ = 0. Equation (36) hence implies dVeff

dr
(r) = 0, which has the solution

r0 = 2
√
km
`

.
2f) The orbits r = r0 = constant are unstable, since Veff is maximum at r0. Any small displacement
from r0 will result in a gain potential energy, and the particle will move away from the orbit.
3. Cone rolling on a plane
3a) Velocity of centre of mass:

Vcm = ` cos (α)φ̇ (38)

3b) Cone rotational motion is effectively a rotation around the instantaneous axis OA. The angular
velocity around OA is

ω =
Vcm

` sinφ
=

cos (α)

sin (α)
φ̇ (39)

3c) Let (x1, x2, x3) be the coordinate system aligned with the principal axes of the cone. The projec-
tion of ~ω on these axes is:

~ω = ω1~ex1 + ω2~ex2 + ω3~ex3 = ω sin (α)~ex1 + ω cos (α)~ex3 (40)

Component of ω along the x3 axis:

ω3 = ω cosα =
cos2 (α)

sin (α)
φ̇ (41)

3d)

T =
1

2
I1ω

2
1 +

1

2
I3ω

2
3 (42)

=
1

2
I1 [ω sin (α)]2 +

1

2
I3 [ω cos (α)]2 (43)

=
3

40
H2mφ̇2

[
1 + 5 cos2 (α)

]
(44)

4. Light from a fluorescent tube
4a)

In the S frame the tube lights up at the point z at time t. Seen from coordinate system S’ :

z′ = γ(z − vt) (45)

t′ = γ(t− vz

c2
) (46)
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In the S frame the tube lights up at the point z+ ∆z at time t. Seen from coordinate system S’ :

z′ + ∆z′ = γ(z + ∆z − vt) (47)

t′ + ∆t′ = γ(t− v(z + ∆z)

c2
) (48)

4b) From 4a) we get that:

∆z′ = γ∆z (49)

∆t′ = −γv∆z

c2
(50)

Seen from S’ the fluroscent tube does not light up instantaneously everwhere (like in S), the
lighting up propagates with the velocity:

u =
∆z′

∆t′
=

γ∆z

−γv∆z
c2

= −c
2

v
(51)
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