
TFY4345 Summer 2019 Solutions

Solutions by Professor Jaakko Akola.
Typed and modified by Martin Mojahed.

Problem 1

(a)
i. False. The method of Lagrange’s undetermined multiplier can also be used
for systems that have non-holonomic constraints of the form f(q, q̇, t).
ii. False. When one of the events lies outside the light cone of the other, they
can never be causally connected. This is due to the fact that there are no signal
that can travel faster than the speed of light (special relativity).
iii. False. Kepler orbits are conical intersections, including circle, ellipse,
parabola and hyperbola.
(b)

The angular momentum ~L is defined as,

~L = ~r × ~p = εijkxjpk. (1)

The formal definition of the Poisson brackets is,

[Lz, Ly] =
∂Lz
∂qi

∂Ly
∂pi
− ∂Lz
∂pi

∂Ly
∂qi

, (2)

where we have used Einsteins summation convention (repeated indices are be-
ing summed over). If we consider a particle moving in a velocity independent
potential we can take the generalized coordinates to be the usual Cartesian coor-
dinates (q1, q2, q3) = (x, y, z), and then the canonical momentum simply equals
the physical momentum. A straight forward calculation of the terms in Eq.(2)
yields,

∂Lz
∂xi

=
∂

∂xi
(xpy − ypx) = δixpy − δiypx, (3)

∂Lz
∂pi

=
∂

∂pi
(xpy − ypx) = δiyx− δixy, (4)

∂Ly
∂xi

=
∂

∂xi
(zpx − xpz) = δizpx − δixpz, (5)

∂Ly
∂pi

=
∂

∂pi
(zpx − xpz) = δixz − δizx. (6)
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Substituting these expressions back into Eq.(2) we get,

[Lz, Ly] = (δixpy − δiypx)(δixz − δizx)− (δiyx− δixy)(δizpx − δixpz)
= zpy − ypz = −Lx (7)

c)
We will choose a coordinate system with the first axis pointing to the south, the
second axis pointing to the east and the third axis pointing outwards. In this
coordinate system we get the following expressions for the velocity of the car v
and the angular velocity of the earth ω:

~v = (0, v, 0), (8)

~ω = (−ω cosλ, 0, ω sinλ). (9)

From the definition of the Coriolis force FC = 2mv × ω we get,

FC = (2mv sinλ, 0, 2mv cosλ). (10)

We can neglect the third component of this force, which is contributing to the
support force from the road, since mg is certainly much greater. By inserting
the numerical values into the expression above (ω = 7.29 × 105, m and v are
given in the text) we get FC = 19.89N ≈ 20N towards the south.

Problem 2

a) The generalized coordinates are x and θ. The pendulum coordinates is ex-
pressed in terms of the generalized coordinates as,

(x1, y1) = (a+ x+ l sin θ,−l cos θ). (11)

The kinetic and potential energy are given by,

T =
1

2
Mẋ2 +

1

2
m(ẋ1

2 + ẏ1
2) =

1

2
Mẋ2 +

1

2
m[(ẋ1 + l cos θθ̇)2 + l2θ̇2 sin2 θ]

=
1

2
(M +m)ẋ2 +

1

2
ml2θ̇2 +ml cos θẋθ̇, (12)

V =
1

2
kx2 −mgl cos θ. (13)

The Lagrangian L = TV is then given by,

L =
1

2
(M +m)ẋ2 +

1

2
ml2θ̇2 +ml cos θẋθ̇ − 1

2
kx2 +mgl cos θ. (14)

From the definition of canonical momentum pq = ∂L
∂q̇ and canonical force
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Fq = ∂L
∂q we get,

px =
∂L
∂ẋ

= (M +m)ẋ+ml cos θθ̇, (15)

pθ =
∂L
∂θ̇

= ml cos θẋ+ml2θ̇, (16)

Fx =
∂L
∂x

= −kx, (17)

Fθ =
∂L
∂θ

= −ml sin θẋθ̇ −mgl sin θ. (18)

b)
The equation of motion is given by the Euler-Lagrange equation,

d

dt

∂L
∂q̇
− ∂L
∂q

= 0. (19)

It follows from Eq.(14) that the equations of motion are,

x : (M +m)ẍ+ml cos θθ̈ −ml sin θθ̇2 = −kx (20)

θ : ml cos θẍ+ml2θ̈ = −mgl sin θ. (21)

c)
For small oscillations we have cos ≈ 1 and sin ≈ θ and we may linearise the
equations of motion (neglecting also θθ̇2, since this was not mentioned explicitly
there was no reduction for points if it was not included),

x : (M +m)ẍ+mlθ̈ + kx = 0 (22)

θ : mlẍ+ml2θ̈ +mglθ = 0. (23)

We rewrite the equations above in terms of the new variables given in the text
and get,

x : (1 + α)ü+ αθ̈ + ω2
0u = 0, (24)

θ : ü+ θ̈ + ω2
1θ. (25)

Problem 3

(a)
Since the slab is uniform its mass M is M = A×ρ = 1

2abρ. Let xCM denote the
x-component of the center of mass (CM). Using the definition of CM we find,

xcm =
1

M

a∫
0

dx

b(1− x
a )∫

0

dyρx =
ρb

M

a∫
0

dx(1− x

a
)

=
a2bρ

M

1∫
0

du(1− u)u =
ρa2b

6M
=
a

3
, (26)
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where we used the substitution u = 1− x
a which implies dx = −adu. Because of

the geometry in the problem (the slab has a triangular shape) the calculation
of yCM is completely analogous, and the result is yCM = b

3 .

(b)
The slab is two dimensional and is laying in the xy-plane (z = 0). This implies
that Izx = Ixz = Izy = Iyz = 0 and Izz = Ixx + Iyy. All we need to calculate is
then reduced to Ixx,Iyy and Ixy = Iyx:

Ixx = ρ

a∫
0

dx

b(1− x
a )∫

0

y2dy =
ρb3

3

a∫
0

dx(1− x

3
)3 =

ρab3

3

1∫
0

u3du =
M

6
b2. (27)

The computation of Iyy is completely analogous and the result is Iyy = M
6 a

2.
Finally we compute Ixy,

Ixy = −ρ
a∫

0

dx

b(1− x
a )∫

0

yxdy = −ρb
2

2

a∫
0

x(1− x

a
)2 = −ρa

2b2

24
= −M

12
ab. (28)

Putting it all together we can write the inertia tensor on matrix form,

I =
M

6

 b2 − 1
2ab 0

− 1
2ab a2 0
0 0 a2 + b2

 (29)

(c)
By comparing the two matrices in the problem text we see that we can write
the new variables as,

A =
1

2
(a2 + b2), B =

1

2

√
(b2 − a2)2 + a2b2, ϑ = tan−1

( ab

b2 − a2
)
. (30)

The last equation describes a right triangle with side lengths b2 − a2, ab and√
b2 − a2)2 + a2b2 = 2B, where the angle ϑ is opposite to the side whose length

is ab. From this observation we deduce that ab = 2B cosϑ and b2−a2 = 2B cosϑ.
It follows that

a2 =
1

2
(b2 + a2)− 1

2
(b2 − a2) = A−B cosϑ, (31)

b2 =
1

2
(b2 + a2) +

1

2
(b2 − a2) = A+B cosϑ, (32)

and putting it all together we get,

I =
M

18

A+B cosϑ B sinϑ 0
B sinϑ A−B cosϑ 0

0 0 2A

 (33)
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To find the principal moments of inertia and the principal axis we first need to
solve the characteristic equation det(I − ω) = 0 for the principal moments of
inertia ω. Thus we get,

det(I − ω) = (ω − 2A)[(B cosϑ+A− ω)(A−B cosϑ− ω)−B2 sin2 ϑ]

= (ω − 2A)[(ω −A)2 −B2] = 0, (34)

which has three solutions ω1 = 2A, ω2 = A + B and ω3 = A − B. The
corresponding principal axis are the corresponding eigenvectors Vi that satisfies
IVi = ωiVi. The solutions are,

V1 = (0, 0, 1), (35)

V2 = (cos
1

2
ϑ, sin

1

2
ϑ, 0), (36)

V3 = (− sin
1

2
ϑ, cos

1

2
ϑ, 0). (37)

This is a general result for any right triangle. Note that V1 points outside the
xy-plane while V2 and V3 rotate as a function of a and b.

Problem 4

a)
We start by finding the potential V that is associated with the force F . From
F = −∇V it follows that V (r) = 1

3kr
3. The velocity squared v2 in cylinder

coordinates is given by v2 = Ṙ2 +R2θ̇2 + ż2, where Ṙ = 0 because the particle
is constrained to move on the cylinder surface. The kinetic energy T is then
T = 1

2m(R2θ̇2 + ż2), so that the Lagrangian becomes

L = T − V =
1

2
m(R2θ̇2 + ż2)− 1

3
kr3, (38)

where we notice that there is no θ dependence in the Lagrangian. The canonical
momentum pθ and pz are,

pθ =
∂L

θ̇
= mR2θ̇, (39)

pz =
∂L

ż
= mż. (40)

The Hamiltonian H = H(z, θ̇, ż) then becomes,

H = pz ż + pθ θ̇ − L =
p2θ

2MR2
+

p2z
2m

+
1

3
(R2 + z2)

3
2 . (41)
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Finally we find the Hamiltonian equations of motion,

pθ = −∂H
∂θ

= 0, (42)

θ̇ =
∂H

∂pθ
=

pθ
mR2

= constant, (43)

pz = −∂H
∂z

= −kz
√
R2 + z2, (44)

ż =
∂H

∂pz
=
pz
m
. (45)

b)
The Euler-Lagrange equation of motion for the z coordinate becomes mz̈ +
kz
√
R2 + z2 = 0.

Since θ is a cyclic coordinate it follows that pθ (angular momentum) is conserved.
Obviously the total energy is also conserved.
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