
PROBLEM 1 - Euler angles and a heavy spinning top

a. Short descriptions for the questions of the hybrid essay. For more, see the
lecture notes. One is expected to provide a thorough description of the Euler
angles and their general context in terms of orthogonal transformations and
linear algebra. Drawings and equations can be used for supporting this
description.

Euler angles are a convention to achieve three independent angles
(generalized coordinates) and corresponding orthogonal transformations
(rotations) to describe the orientation/rotation of a rigid body. They enable
transformation between the laboratory and body coordinate systems, and
describe fully the orientation of a rigid body and its rotational degrees of
freedom. There are twelve conventions for defining Euler’s angles (here:
ZXZ), and further, there are also other conventions that can be used for
defining orthogonal transformations, such as the one used in aircrafts (pitch
roll, yaw).

Euler angles are the natural generalized coordinates for a heavy spinning top
as φ describes precession around the z-axis, θ marks the inclination with
respect to the vertical and ψ denotes the rotation (spinning) around the body
axis z′.
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The transformation of the ω-vector between fixed and rotating coordinate
systems is achieved by decomposing the angular velocity vector in the
components of Euler angles, where ωφ = φ̇, ωθ = θ̇ and ωψ = ψ̇.

~ω = ~ωφ + ~ωθ + ~ωψ (1)

Since φ is a rotation around the original z-axis, we shall need to transform ~ωφ
in the body coordinate system by applying the full transformation matrix A =
BCD, such that ~ωφ’ = A ~ωφ. Further, θ is a rotation with respect to the line of
nodes (intermediate x-axis), and ~ωθ only requires a rotation with respect to ψ,
i.e. matrix B. The last rotation with respect to ψ occurs in the body coordinate
system with respect to the z′-axis, and therefore, no rotation is required for
~ωψ=~ω′ψ.

Finally, the components of ~ω′φ, ~ω′θ and ~ω′ψ need to be collected to obtain the
transformed angular velocity ~ω′. See the compendium, page 63, for a full
description and the final result. (Just typing the final result is not a valid
answer here.)
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b. Lagrangian reveals immediately that φ and ψ are cyclic (do not appear
explicitly), therefore the associated canonical momenta are conserved. These
correspond to the angular momenta that involve precession and spinning of
the top. The system is conservative meaning that total energy is conserved as
well.

Lagrange equations are:

d
dt

(I1φ̇ sin2 θ + I3ω3 cosθ) = 0 (2)

I1θ̈ − I1φ̇
2 cosθ sinθ + I3ω3φ̇ sinθ −mgh sinθ = 0 (3)

d
dt

(I3ω3) = 0 (4)

These forms for φ and ψ are more illustrative than carrying out the time
derivative explicitly, but both choices are valid, of course. Further, the explicit
forms of pφ and pψ can be seen inside the parentheses, respectively. The
angular velocity component ω3 = φ̇ cosθ + ψ̇ that corresponds to the spin is
the constant component of angular velocity.
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PROBLEM 2 - Plate sliding against a wall

a. Using the notation given in the problem statement, we choose as the
generalized coordinate the angle the plate makes with the vertical. Denote
this by θ. For a homogeneous plate, the distance form the center of mass to
either end is `/2, and by symmetry also the distance from the centre of mass to
the corner of the wall and floor is `/2. The key idea is the following: as the
plate starts sliding, its center of mass moves along a circle of radius `/2 until
the plate looses contact with the wall as ẍ = 0. In terms of θ, the x and y
coordinates are

x =
`
2

sinθ, y =
`
2

cosθ,

so that the velocity of the center of mass is ẋ2 + ẏ2 = `2

4 θ̇
2 and the angular

velocity is ω = θ̇.

Let us assume a general moment of inertia with respect to the rotation around
the z axis through the center of mass, Iz, and fix its precise value later. The
Lagrangian is
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L =
1
2

mv2 +
1
2

Iω2
− V =

m
8
`2θ̇2(1 +

4
m`2

Iz) −mg
`
2

cosθ. (5)

For part (a), the Lagrangian equation of motion is

m`2

4
(1 +

4
m`2

Iz)θ̈ = mg
`
2

sinθ, (6)

which simplifies to θ̈ = 2g/(`(1 + 4Iz/(m`2)) sinθ. For Iz = m`2/12 this becomes
θ̈ = 3g/(2`) sinθ.
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b. Let us first note that total energy of the plate is

E =
m
8
`2θ̇2(1 +

4
m`2

Iz) + mg
`
2

cosθ =
m`2

6
θ̇2 +

mg`
2

cosθ, (7)

where the latter equality is again for Iz = m`2/12. By energy conservation this
is equal to mg`

2 cosα, so we can solve for θ̇2 as

θ̇2 = 4(1 + 4Iz/(m`2))−1 g
`

(cosα − cosθ) =
3g
`

(cosα − cosθ), (8)

where we again show the result for general Iz and the specific Iz = m`2/12.
Then we can find out when ẍ vanishes. Taking the derivatives we first obtain

ẍ = −
`
2

sinθθ̇2 +
`
2

cosθθ̈, (9)
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and substituting θ̈ and θ̇2 from above,

ẍ = −
`
2

sinθ · 4(1 + 4Iz/(m`2))−1 g
`

(cosα − cosθ)

+
`
2

cosθ(1 + 4Iz(m`2))−1 2g
`

sinθ

= −
3g
2

sinθ(cosα − cosθ) +
3g
4

sinθ cosθ (10)

Setting ẍ = 0 and looking for the solution sinθ , 0, we find that
cosθ = 2

3 cosα. Note that this result holds independently of Iz (as is easily
seen from the first line in Eq. (10)).
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PROBLEM 3 - System with a moving wall

The starting point of this problem is that the wall imposes an external force to
the body. Correspondingly, the wall position oscillates as Xw = A sin(ωt). The
position of the object is then

x = `0 + z + Xw (11)
ẋ = ż + Ẋw = ż + Aω cos(ωt), (12)

where `0 is the equilibrium length and z is the stretch of the spring.
Correspondingly

L =
1
2

m(ż + Aω cos(ωt))2
−

1
2

kz2 (13)

The canonical momentum is pz = ∂L
∂ż = m(ż + Aω cos(ωt)) which can be

modified as ż = pz/m − Aω cos(ωt).
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Next, the Hamiltonian will be constructed via Legendre transformation

H = pzż − L = ... =
p2

z

2m
− pzAω cos(ωt) +

1
2

kz2 (14)

Hamilton’s equations are

ż =
∂H
∂pz

=
pz

m
− Aω cos(ωt) (15)

ṗz = −
∂H
∂z

= −kz, (16)

Take a time derivative of ż and combine the two equations to get the final
Lagrange equation of motion

z̈ +
k
m

= Aω2 sin(ωt) (17)

The Lagrangian contains explicit time-depence, i.e. ∂L
∂t = dH

dt , 0. Hamiltonian
is not conserved and it is not the total energy.
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PROBLEM 4 - Scattering problem

a. As typical for central forces, this is a 2D problem with two generalized
coordinates r and θ. The Lagrangian in polar coordinates is of the form:

L =
1
2

m(ṙ2 + r2θ̇2) − V(r) (18)

We can see that θ is a cyclic coordinate, and therefore, its canonical
momentum is conserved.

pθ =
∂L
∂θ̇

= mr2θ̇ −→ ṗθ =
d
dt

(mr2θ̇) = 0 (19)

The latter is the equation of motion for θ, and it leads to the conservation of
angular momentum

mr2θ̇ = `2 (20)

The resulting Lagrange equation is then

d
dt

(mṙ) −mrθ̇2 +
∂V
∂r

= 0 (21)
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Modify this further

mr̈ −mrθ̇2 = f (r) −→ mr̈ −
`2

mr3
= f (r) (22)

This is now the equation that we must convert to the final form by making the
substitution u = 1/r. Let us first use the conservation of angular momentum

`dt = mr2dθ −→
d
dt

=
`

mr2

d
dθ

(23)

Substitute this in the Lagrange equation

1
r2

d
dθ

(
`

mr2

dr
dθ

)
−
`2

mr3
= f (r) (24)

Introduce u in the equation by taking into account that du = −dr/r2

d2u
dθ2

+ u = −
m
`2

d
du

V
(1
u

)
(25)
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The rest follows easily

`2u2

m

(
d2u
dθ2

+ u
)

= −f (u) (26)

b.i We shall use the previous result as a starting point for solving the orbit
equation. Note that the force can be expressed now as

f (r) =
km
r3

= kmu3 = f (u) (27)

The differential equation becomes

d2u
dθ2

+ u = −
km2

`2
u (28)

d2u
dθ2

+
(
1 +

km2

`2

)
u = 0 (29)
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Behold! This is a differential equation of the same form as that for the
harmonic oscillator with the general solution

u = A sin(Bθ + C), B2 = 1 +
km2

`2
(30)

Note that angular momentum is conserved, i.e. ` = msv∞ = mr0v0, and this
leads to B2 = 1 + k/r2

0v2
0. Further, consider the boundary conditions: (i) Very

far away θ = 0 and u = 0 leading to the conclusion that C = 0. (ii) At the
periapsis θ = θ0 and r = r0 = rmin meaning that u = umax.

umax =
1
r0

= A sin(Bθ0) = A sin(π/2) −→ Bθ0 = π/2, A = 1/r0 (31)

The orbit equation becomes then

1
r

=
1
r0

sin
(√

1 + k/(r2
0v2

0)θ
)

(32)
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b.ii This will not require any complicated mathematics and integrals. Based
on the conservation of angular momentum, the impact parameter is
s = r0v0/v∞. Let us consider here the conservation of energy

E =
1
2

mv2
∞ =

1
2

mv2
0 +

km
2r2

0

−→ v2
∞ = v2

0 +
k
r2

0

(33)

meaning that

s2 =
r0v0

v2
0 + k/r2

0

=
r2

0

B2
−→ s =

r0

B
=

r0√
1 + k/r2

0v2
0

(34)

The orbit angle at the periapsis is θ0 = π/(2B) as solved previously, and since
B = r0/s, this can be written as θ0 = πs/(2r0). This is the same as the angle Ψ in
the scattering theory. The total scattering deflection angle becomes then

Θ = π − 2Ψ = π − 2θ0 = π
(
1 −

s
r0

)
= π

(
1 −

1√
1 + k/r2

0v2
0

)
(35)
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b.iii Based on the previous results, we can calculate directly that if s = r0/2
then θ0 = π/4. This means that the total deflection angle will be Θ = π/2, i.e.
90 degrees. Graphically, this sets the deflection asymptote perpendicular with
respect to the original particle direction. The corresponding plot should show
a trajectory where an incoming particle (s = r0/2) gets deflected near the
origin (periapsis distance r0 apart from the centre) such that the outgoing
particle will approach the deflection asymptote up to (positive) infinity.
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PROBLEM 5 - 007 space odyssey

The problem is as simple as it looks. We can consider three inertial frames,
Earth (Ms. Moneypenny) as S, moon rocket as S′, landing module (007) as S′′

and probe vessel (Mr. Jaws) moving in the latter by a velocity v. The velocity
difference between subsequent inertial frames is always v as well.

Since this is collinear motion, we can apply directly Einstein’s velocity
addition formula (kudos for those who derive it from scratch). It ensures that
the new velocity does not exceed the speed of light.

a. We consider the velocity difference between S and S′′. The solution is

v′ =
v + v√

1 + v2/c2
=

2v√
1 + β2

(36)
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b. We consider the total velocity change between Earth (S) and the probe
vessel (velocity v in S′′) by making a subsequent velocity addition by using
Einstein’s velocity addition formula, again.

v′′ =
v + v′√

1 + vv′/c2
= ... =

[
3 + β2√
1 + 3β2

]
v (37)

Checking the limits show that for v << c, we get 2v and 3v, respectively, as
expected for the classical Galilei transformation. For v = c, both cases reduce
to c, as required.
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