
PROBLEM 1. True or false (where explanations matter)

i. TRUE. Only such orthogonal transformations which approach continuously
the identity operation qualify. In terms of the corresponding orthogonal
transformation matrices, the determinant has to equal to +1 (not -1). This is
related to Noether’s theorem which states that if there is a continuous
symmetry in the system, then there is a related conserved quantity.

ii. TRUE. According to the intermediate axis theorem, the rotations around
the I1 and I2 principal axes are unstable, but rotation around I3 is stable (the
case of two degenerate eigenvalues). We derived the intermediate axis
theorem in the lectures from Euler’s equations for rigid bodies.

iii. FALSE. There are two perspectives for "full" solution. Firstly, in terms of
the equations of motion, we can use the holonomic constraints for reducing
the number generalized coordinates down to 3N − k and solve those equations
of motion. The remaining k generalized coordinates are already defined by
the constraint equations. Therefore, one does not have to solve 3N Lagrangian
equations of motion. Secondly, if one expects to calculate the forces of
constrains, one needs solve a set of 3N + k equations by using the method of
Lagrange’s undetermined multipliers.
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iv. Both TRUE/FALSE can be accepted. TRUE: The lateral Coriolis correction
on the Northern hemisphere is systematically on the left although its
magnitude varies with the shooting direction. However, if we consider
shooting East (+) or West (-) in our local coordinate system, the magnitude of
the lateral correction (due to the cross-product ~ω × ~v) remains the same. The
deflection is towards South and North, respectively. However, also the target
has been rotated by 180 degrees such that in terms of rifle adjustment there is
no change! FALSE: There is also a vertical deflection (down / up) due to the
Coriolis effect which depends on the direction and will require a rifle
adjustment. FALSE is also accepted, if the student correctly points that the
lateral displacement (not correction) is in opposite directions taking into
account a possible confusion with the problem assignment.

v. FALSE. The angular momentum does not have to point in the same
direction as ~ω. One example is the precessing free body where ~ω changes it
direction while ~L is a constant (no external torque). The second example is a
case where the body has been made to rotate around some arbitrary direction
(fixed ~ω) which does not coincide with the principal access. Correspondingly,
one has to apply torque which causes that angular momentum changes.
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vi. FALSE. There are 3N degrees of freedom for a system of N particles in the
first place. A molecule has 3N − 6 non-trivial vibrational modes. The 6 trivial
modes correspond to translation (3) and rotation (3) of the whole molecule
and their associated frequencies are naturally 0 cm−1. Note: Also planar
molecules have out-of-the-plane vibrational modes (e.g. benzene C6H6).

PROBLEM 2. Condition for circular orbits

This is a problem that is supposed to be easy but may have caused some
trouble for students because of its general (implicit) nature. Our starting point
is the 2D central field motion of a particle, as for the Kepler problem.

(a) Let us start by identifying the generalized coordinates. The central force
problem can be treated in two dimensions and the convenient coordinates are
polar coordinates. This means that the coordinates in question are the
distance r and the orbit angle θ. The corresponding Lagrangian is

L =
1
2

m(ṙ2 + r2θ̇2) − V(r) (1)

By inspecting the Lagrangian, we acknowledge immediately that θ is a cyclic
coordinate. Also total energy is concerved due to V(r) (conservative).
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This means that the corresponding canonical momentum, pθ = mr2θ̇ = ` is a
constant. In other words, angular momentum ` is conserved and its
derivative ṗθ = d

dt (mr2θ̇) = 0. Actually, this is the second Lagrange equation of
motion (for θ).

The first Lagrangian equation of motion (for r) follows easily by taking the
derivatives

d
dt
∂L
∂ṙ
−
∂L
∂r

= mr̈ −mrθ̇2
− f (r) = 0 (2)

This can be modified further

mr̈ = f (r) +
`2

mr3
= −

∂Veff (r)
∂r

(3)

(b) To solve the circular orbit r = r0, we must first write out the total energy

E =
1
2

m(ṙ2 + r2θ̇2) + V(r) =
1
2

mṙ2 +
`2

2mr2
+ V(r) (4)

The orbit is circular ṙ = 0 and r = r0, and therefore the energy becomes

E0 =
`2

2mr2
0

+ V(r0) = Veff (r0) (5)

Jaakko Akola (NTNU Trondheim) December 1, 2022 4 / 17



We cannot solve this further without knowing the explicit form of V(r). The
condition for the force follows from the requirement that we are in the
minimum of the effective potential

∂Veff (r)
∂r

∣∣∣∣∣∣
r=r0

= 0 =⇒ f (r0) = −
`2

mr3
0

; r0 =

[
−

`2

mf (r0)

]1/3

(6)

(c) Inspection of the derivative of the effective potential yields information of
local extrema (minima and maxima). To distinguish between those two cases,
one has to look at the curvature of the effective potential (the shape of Veff ), i.e.
its second derivative must be positive around a local minimum.

∂2Veff (r)

∂r2

∣∣∣∣∣∣
r=r0

= −
∂f (r)
∂r

∣∣∣∣∣∣
r=r0

+
3`2

mr4
0

> 0 (7)

Taking into account the previous result for circular force, we can modify this

∂f (r)
∂r

∣∣∣∣∣∣
r=r0

< −
3f (r0)

r0
(8)

Let us consider the potential V(r) = krn+1 which leads to a force f (r) = −krn.
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Direct implemention of Eq. (8) leads to

−knrn−1
0 < 3krn−1

0 =⇒ n > −3 (9)

This means that f (r) > −kr−3 and |V(r)| > kr−2 is the condition for being able to
have a stable a circular orbit (note k < 0, attractive). This makes sense if you
consider the shape of the effective potential Veff . If you have have a potential
V(r) = krn+1 with n < −3, the repulsive centrifugal effect ∼ r−2 will not
predominate at small distances and Veff diverges to minus infinity as r→ 0.
Correspondingly, the point where the first derivative of Veff disappears (cyclic
orbit) becomes a local maximum, and it is therefore not stable. This is the first
result for the derivation of the famous Bertrand’s theorem for closed orbits.

PROBLEM 3. Hoop rolling down an inclined plane

In this problem, a hoop is rolling down an inclined plane (wedge) which itself
can slide frictionless on a horisontal surface.

(a) The convenient generalized coordinates are X (inclined plane), s (hoop)
and θ (hoop), where the two latter ones are connected via the slipping
constraint ṡ = Rθ̇ (note R = a in the figure, my bad). We can solve the problem
using X and s by eliminating θ̇ using the constraint.
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Let us start from the position coordinates of the center of the hoop:

x = X + s cosα − R sinα =⇒ ẋ = Ẋ + ṡ cosα (10)
y = s sinα + R cosα =⇒ ẏ = ṡ sinα (11)

Note that the center is tilted with respect to the contact due to inclination. The
Lagrangian becomes (here: ṡ = Rθ̇)

L =
1
2

m(ẋ2 + ẏ2) +
1
2

Iθ̇2 +
1
2

mẊ2
−mgy (12)

=
1
2

(
m +

I
R2

)
ṡ2 +

1
2

(M + m)Ẋ2 + mẊṡ cosα −mgs sinα −mgR cosα(13)

where the last term is a constant (can be neglected, equal to shifting potential).

(b) The Lagrangian reveals that X is cyclic, therefore the associated canonical
momentum

pX =
∂L
∂Ẋ

= (M + m)Ẋ + m cosαṡ (14)

is a constant and the associated Lagrangian equation reduces to ṗX = 0 and
can be written out as

(M + m)Ẍ + m cosαs̈ = 0 =⇒ s̈ =
M + m
m cosα

Ẍ (15)
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The equation of motion is coupled meaning that we have to solve the
Lagrange equation for s before we can solve both of them in finalized forms.
After taking the derivatives, the Lagrange equation for s becomes(

m +
I

R2

)
s̈ + m cosαẌ + mg sinα = 0 (16)

The mass m cancels out and the equation can be written as(
1 +

I
mR2

)
s̈ + cosαẌ = −g sinα (17)

This is the second coupled Lagrange equation. We can use now the previous
result of Eq. (15) for pX:(

1 +
I

mR2

)(
−

M + m
m cosα

)
+ cosαẌ = −g sinα (18)

The equations of motion become

Ẍ =
g sinα cosα(

1 + I
mR2

)(
1 + M

m

)
− cos2 α

= aX (19)

s̈ = −

g
(
1 + M

m

)
sinα cosα(

1 + I
mR2

)(
1 + M

m

)
− cos2 α

= as (20)
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One can now write the solutions for X(t) and s(t) taking into account initial
conditions (not defined herein)

X(t) = X(0) + Ẋ(0)t +
1
2

aXt2 (21)

s(t) = s(0) + ṡ(0)t +
1
2

ast2 (22)

Note that as < 0 while aX > 0 and both are constants. Further, as many will
remember for a homogeneous ring I = mR2, which implemented in Eqs. (19)
and (20) will make them somewhat simpler.

PROBLEM 4. Hamitonian mechanics and canonical transformations

This is a one-dimensional problem with a dissipative damping force
proportional to instantaneous velocity. In terms of the resulting physics, the
problem is simple and reduces in the end to the underdamped harmonic
oscillator, but we shall focus on the Hamiltonian formalism.

(a) Lagrangian is given and we shall solve it in a straightforward fashion
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2γe2γtmq̇ + e2γtmq̈ +
dV
dq

e2γt = 0 (23)

This reduces to
mq̈ = −

dV
dq
− 2mγq̇ (24)

which is the requested equation of motion demonstrating a force that results
in from the conservative potential V(q) and another (external) force
contribution from the dissipative term.

(b) The transformation to Hamiltonian involves the equation

H = pq̇ − L = e2γtmq̇2
− e2γt 1

2
mq̇2 + e2γtV(q) = e2γt

(1
2

mq̇2 + V(q)
)

(25)

The canonical momentum is p = ∂L
∂q̇ = e2γtmq̇, which results in the final

Hamiltonian

H(q, p, t) = e−2γt p2

2m
+ e2γtV(q) (26)
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(c) The generating function of the canonical transformation is

F(q,Q,P, t) = eγtqP −QP = F2(q,P, t) −QP (27)

By inspection of F we can already distinguish that we are dealing with a
canonical transformation of the second kind. However, we are supposed to
derive the corresponding transformation equations from scratch. We will
need to start from the basic equation:

pq̇ −H = PQ̇ − K +
dF
dt

(28)

Let us calculate the time-derivative first:

dF(q,Q,P, t)
dt

=
∂F
∂q

q̇ +
∂F
∂Q

Q̇ +
∂F
∂P

Ṗ +
∂F
∂t

(29)

= e2γtPq̇ − PQ̇ −QṖ + e2γtqṖ + γqP (30)

Insert this into Eq. (28)

pq̇ −H = −K + e2γtPq̇ −QṖ + e2γtqṖ + γe2γtqP (31)

=⇒ (p − e2γtP)q̇ + (Q − e2γtq)Ṗ = H − K + γe2γtqP (32)
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Since q and P are independent variables the coefficients before q̇ and Ṗ must
vanish independently

p = eγtP (33)
Q = eγtq (34)
K = H + γeγtqP (35)

The transformed Hamiltonian becomes

K =
p2e−2γt

2m
+ e2γtV(q) + γe2γtqP (36)

but this is still in the mixed form because we do not know V(q).

(d) For V(q) = 1
2 mω2q2, the transformed Hamiltonian becomes

K =
e2γtP2e−2γt

2m
+ e2γt 1

2
mω2Q2e−2γt + γe2γte−2γtQP (37)

=
P2

2m
+

1
2

mω2Q2 + γQP = K(Q,P, t) (38)

Note that transformed Hamiltonian K(Q,P, t) does not explicitly depend on
time so that it is a constant of motion (note: [K,K] = 0, trivial).
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(e) Using Hamilton’s equations for the canonical transformation, we get

Q̇ =
∂K
∂P

=
P
m

+ γQ (39)

Ṗ = −
∂K
∂Q

= −mω2Q − γP (40)

Taking derivative on both sides of Eq. (39) we get

Q̈ = =
Ṗ
m

+ γQ̇ = −
1
m

(mω2Q + γP) + γ(P/m + γQ) (41)

= −ω2Q + γ2Q (42)

which results in the simple differential equation familiar from harmonic
oscillator

Q̈ + (ω2
− γ2)Q = 0 (43)

For the case γ < ω, we have ω2
− γ2 = Ω2 > 0, and Q(t) has the oscillating

solution
Q(t) = AeiΩt + Be−iΩt (44)

where A and B are integration constants set by initial conditions. Use the
transformation between q and Q for the final underdamped solution of q(t)

q(t) = e−γt
(
AeiΩt + Be−iΩt

)
(45)
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PROBLEM 5. Compton scattering

(a) The conserved quantities are total energy and momentum 4-vector
(alternatively, one can say that relativistic linear momentum conserved). The
4-momentum can be derived from the event 4-vector by taking a
time-derivative with respect to eigentime

Pµ = m
d

dτ
= m

[
dx
dτ
,

dy
dτ
,

dz
dτ
,

d(ict)
dτ

]
= [γ~p0, iγmc] = [γ~p0, iE/c] (46)

where we have used E = γmc2. For a photon, the relativistic momentum is
p = h/λ, and we shall denote the relativistic linear momentum of the recoiled
electron as pe.

(b) Let us write down the 4-momentum before the collision in along
z-direction

Pµ,i = Pµ,γ + Pµ,e =

[
0, 0,

h
λ
,

ih
λ

]
+

[
0, 0, 0, imc

]
=

[
0, 0,

h
λ
, i
(
mc +

h
λ

)]
(47)

The photon hits the electron changing its wavelength to λ′, scatters in angle θ,
and the electron recoils in angle φ in the xz-plane. After the collision, the
4-momentum becomes
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Pµ,f = Pµ,γ′ + Pµ,e′ =

[
h
λ′

sinθ, 0,
h
λ′

cosθ,
ih
λ′

]
(48)

+

[
pe sinφ, 0, pe cosφ, i

√
m2c2 + p2

e

]
(49)

=

[
h
λ′

sinθ + pe sinφ, 0,
h
λ′

cosθ + pe cosφ,
( ih
λ′

)
+ i

√
m2c2 + p2

e

]
(50)

We have used here the relativistic dispersion relation for electron energy
E2 = m2c4 + p2

e c2. By setting the two equations equal (conservation of
4-momentum) we achieve three equations

(h/λ′) sinθ + pe sinφ = 0 (51)
(h/λ′) cosθ + pe cosφ = h/λ (52)

h/λ′ +
√

m2c2 + p2
e = mc + h/λ (53)

Next, solve from Eq. (51) the relationship between θ and φ

sinφ = −
h
λ′pe

sinθ =⇒ cosφ =

[
1 −

( h
λ′pe

)2
sin2 θ

]1/2

(54)

Jaakko Akola (NTNU Trondheim) December 1, 2022 15 / 17



Insert this in Eq. (52) and after some elaboration the result looks like

p2
e =

h2

λ2
+

h2

λ′2
− 2

h2

λλ′
cosθ (55)

On the other hand, we can modify Eq. (53) such that it becomes

p2
e = h2

( 1
λ
−

1
λ′

)2
+ 2mch

( 1
λ
−

1
λ′

)
(56)

Comparing the two previous equations (set them equal, few intermediate
steps) leads to the conclusion

cosθ = 1 −
mc
h

(λ′ − λ) (57)

which results in the final result

sin2 θ
2

=
mc
2h

(λ′ − λ) =
1

2λc
(λ′ − λ) (58)

where λc = h/(mc) is the predefined Compton wavelength.
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(c) The kinetic energy of the electron after collision can be solved by
considering the conservation of energy and the result of the previous section.
The initial photon energy is hc/λ and the electron is at rest (mc2). Let us write
the total energy before and after collision:

mc2 + hc/λ = γmc2 + hc/λ′ (59)

Note that the total energy for a moving electron is γmc2. By rearranging
terms, we achieve

(γ − 1)mc2 = hc
( 1
λ
−

1
λ′

)
= K (60)

where K stands for kinetic energy.

K = hc
( 1
λ
−

1
λ′

)
= h

(λ′ − λ
λλ′

)
(61)

= hc
(

2λc sin2 θ
2

λ[λ + 2λc sin2 θ
2 ]

)
(62)

= hν
(

2χ sin2 θ
2

1 + 2χ sin2 θ
2

)
(63)

where we have used χ = λc/λ for shortening the final notation.
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