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1) The charge @ is distributed over the surface of the conductor and results in some kind of
surface charge density o (which will in general vary from place to place on the conductor’s
surface, unless it is spherical). The twice as large charge 2Q) will distribute itself in the same
manner and result in a twice as large surface charge density everywhere, 20. The electric field
in point P can then be computed with Coulomb’s law. With charge Q:

odA |
E\(P) = s 47r50r2r
With charge 2Q):
20 dA
E,(P) = r=2FE,(P
»(P) s 47r507“2r «(P)

Here, the integrals are taken over the (closed) surface S of the conductor, r is the distance from
the surface element dA to P, and 7 is a unit vector along the direction from dA to P.
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Since the field everywhere (i.e., everywhere outside the conductor!) has become twice as large,
the potential (relative to zero, chosen at infinity)

V(P):—/PE-dl

o

must also have become twice as large.

2) Since E = 0 everywhere inside the metal sphere, the net charge ) must (because of Gauss’
law) distribute itself over the surface of the sphere, and from symmetry reasons, uniformly over
the surface. Then Gauss’ law yields, with a spherical Gaussian surface with a radius r larger
than the radius of the metal sphere,

Q

4dmegr?

E(r)

i.e., as for a point charge @ at the center of the sphere. The potential V' (r) must therefore also
become as for a point charge,
Q

dmegr

V(r)

Inside the metal sphere and on the surface of the sphere, the potential is constant and equal to
Q/4meoR, where R is the radius of the sphere.

If the distance from the center of the sphere to B is twice the distance to A, the field is reduced
by a factor of 4, while the potential is reduced by a factor of 2.

3) The potential on a metal sphere with radius R and charge @) is (see the former question)

Q

V(R) = dregR

Let us e.g. put Vo = V(a) = Q/4meoa, so that Vi = V,/2 = 15V,/30, Vo = V4 /3 = 10V, /30 and
V3 = Vo /5 = 6V,/30. Then we see that V3 : V5 : V3 =15:10: 6.

It is intuitively clear that the potential is largest for the smallest sphere: Imagine starting with
a neutral metal sphere and adding charge until the total charge is (). Clearly, it must be harder
to add this charge the smaller the sphere is, due to repulsion between the charges added. So,
you must perform a larger amount of work in order to put the charge on the smaller sphere. In
other words, the smallest sphere ends up with the largest potential energy, and therefore also
the largest electric potential.

[Had the charge been negative, the smallest sphere would have had the smallest electric poten-
tial, i.e., the most negative potential relative to V' (co) = 0. But still the smallest sphere would
have had the largest potential energy, since AU = QAV = —|Q|AV when @ < 0.]

4) Let us find the direction of the electric field in the vicinity of the two charges, knowing that
the electric field points towards a negative charge. Just to the left of x = —a, the field must
point right, i.e., E(x) > 0. All curves are consistent with this. But just to the right of z = —a,
the field must point left, i.e., E(z) < 0. Curve 1 is not consistent with this. Just to the left
of z = a, the field must point right, i.e., F(z) > 0. Curve 4 is not consistent with this. And
finally, just to the right of x = a, the field must point left, i.e., E(z) < 0. Curve 2 is not
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consistent with this. We are left with curve 3, which is correct. We see that E(0) = 0 in curve
3, which obviously must be correct.

5) E = 0 inside the metal sphere, thus A and C are out of the question. The field lines in B
correspond, as we shall see in a few weeks, to the magnetic field around a current carrying wire
perpendicular to the paper plane.

6) First, let’s agree what happens here: The charge ¢ is uniformly distributed on the surface
of the metal sphere and creates an electric field Ey(r) = q/4meor? outside (i.e. 7 > R; E =0
inside the metal sphere). Electric dipoles in the plastic are aligned because of Ej, and the net
effect of the polarization is an induced negative charge —¢; on the inner surface of the plastic
layer and a positive charge g; on the outer surface of the plastic layer. The induced charge
—g; creates an electric field E;(r) = —q;/4meor? inside the plastic, directed opposite to Ey, i.e.
radially inwards, so that the total electric field £ = Ey + E; becomes weaker in the plastic than
if we had only air. On the outside of the plastic, the field strength is ”reestablished” by the
induced charge g; on the outer surface. Alternatively, with Gauss’ law: Total charge inside a
spherical Gaussian surface with radius r > 2R is ¢ — ¢; + ¢; = g, so the electric field here is
Eo(r) = q/4meor?. Total charge inside a spherical Gaussian surface with radius R < r < 2R is
q — gi, so here, i.e., in the plastic layer, the electric field is F(r) = (q — ¢;)/4mer?.
Polarization P is, by definition, electric dipole moment pr unit volume. We only have dipoles
within the dielectric plastic layer, so P can be nonzero only here. Field lines for E would be
as in the figure, but in addition we would have new field lines starting on the outer surface of
the plastic layer.

We are left with electric displacement D, and we remember that D is determined by free charge:
Gauss’ law for D reads

$ D dA = Qoo

And by free charge, we simply mean all charge except induced (bound) charges associated with
the polarization of dielectrics that are present in our system. Here, the charge ¢ on the metal
sphere represents the free charge, whereas +¢; represent induced, bound charge.

Gauss’ law for D immediately yields D(r) = q/47r? everywhere outside the metal sphere, and
the field lines are consistent with this.

7) Here, we may assume that we have approximately infinitely large planes. Then we know that
the electric field from one plane equals the charge pr unit area on the plane divided by 2¢y, i.e.,
independent of the distance from the plane. Therefore, we may immediately exclude C, since
the field outside must be zero (an equally large, but oppositely directed field contribution from
the two planes when we are on the outside). Further, A must be wrong: There is no chance
that the electric field is stronger inside the dielectric than in the layer with vacuum.

But why isn’t B correct? Didn’t we learn that the field would become weaker if we inserted
a dielectric? Well, yes, but: Imagine starting with vacuum everywhere. Then the charges
+@ must be uniformly distributed on the two plates. Next, we insert the dielectric in the left
half. Because of the field from the metal plates, the dipoles in the dielectric will be aligned
with the external field. The net effect of this alignment is an induced surface charge on the
dielectric, in our case positive on top and negative at the bottom. If nothing more than this
happened, we would no longer have electrostatic equilibrium: It is no longer ”advantageous”



to have the free charge on the metal plates uniformly distributed. The induced positive charge
on top of the dielectric will pull some of the free electrons from the right half of the upper
metal plate to the left half, and at the bottom, the opposite thing will take place. And when
do we have electrostatic equilibrium? When the potential everywhere on the upper metal plate
has the same constant value V_ and the potential everywhere on the lower metal plate has the
same constant value V.. (Remember: A metal plate is an equipotential in equilibrium!) In
equilibrium, we have the same total charge density on the left and the right side. On the right
side, we have o = 033 and on the left side we have o = a} — 0;. Here, subscript f denotes
free charge on the metal plates and 7 denotes induced charge. With plate area A, these charge
densities must of course fulfill the following: +Q = +(09A/2+0};A/2) = total free charge on the
metal plates. From symmetry reasons, the electric field must still be directed perpendicularly
to the plates, and since the potential is constant on a given plate, the field must be uniform,
E =AV/d= (V. —V_)/d, where d is the distance between the plates.

8) Zero field inside the metal eliminates A and C. Polarization in the plastic reduces the field
with a factor €1/¢p = 10 in comparison to what we would have with vacuum or air present.
The electric field decays as 1/7%, but this gives only a ”reduction factor” of (5/4)?/(5/2)? =1/4
when we compare positions B and D. Thus, the field will be largest in position D.

9) In the point (z,0) (z > a), the charges contribute with pairwise equally large field (in
absolute value), and with directions as shown in the figure:

y
a @) a
Za X
—q o ar Oq

The vector sum of the four thin vectors results in a total electric field pointing in the positive
y direction.

10) The potential from a point charge ¢ is

q
Vir) = Ameor
where r is the distance from the point charge. The total potential is the sum of the potentials
from each point charge (remember, the superposition principle). Here, we have pairs of charges
with opposite sign but equal distance. Hence, the sum must be zero. Thinking a little, we realize
that the whole zz plane is in fact an equipotential surface with potential V' = 0. Obviously,
the same must also be the case for the yz plane.



11) In the lectures, we used a parallel plate capacitor as an example and started with

U=/0QU(Q)dq

and then showed that with an electric field E, we have a potential energy pr unit volume

w(E) = 2eoB?
2

Here, v(q) represented the potential difference between the capacitor plates, so that v(q) dg
represented the work required to increase the charge on the capacitor plates from +¢ to +(q +
dq). Hence, U becomes the total potential energy stored in the capacitor when we have charged
it from 0 to final charge +Q).

This means that we have two alternative ways of determining the potential energy: We may
associate U with the charge @) and use the first formula, of course provided we know v(q).
Alternatively, we may associate U with the electric field and use the formula

U= /V u(E) dV = /V %EOEQ v

provided we know what the field looks like in the volume V.
In this question, the system is quite simple, and we know both the potential of the metal sphere
when it has a charge ¢,

9
U(Q) N 47T60R
and the electric field in all the space surrounding the sphere,
Q
F =
(r) dregr?

when is is "fully” charged. Of course, it is sufficient to calculate the potential energy U one
way, but let us do it both ways here, in order to check that we obtain the same answer.
U associated with the charge ):

U= Yo di= ¢4 go= <
_/0 U(Q) q_/O 47T80R q_87T€()R

U associated with the field E:

Q )2-477/0072(”— Q?

1 00 1
U:/ E)dV = - / B Amr® dr = — ( _
Vu( ) 260 R A €0 dreg rR 8meo R

2
Here, we used spherical coordinates, but since F only depends upon r, we could do the two
angular integrations ”directly” and use the volume element dV = 4nr? dr = volume of a
spherical shell with radius r and thickness dr.
We see that the answers are equal. In conclusion, we may choose if we like to associate the
potential energy with the charges or with the electric field created by the charges.



12) The total charge on the two capacitors coupled in parallel is
Q=0Q1+Q
Since C; = Q1/AV and Cy = Q2/AV, we may write
Q = C1AV + CoAV = (Cy 4+ Cy) AV

The total capacitance is (pr definition)

so we find
C=0C;+Cy

In other words: The capacitance of two capacitors coupled in parallel equals the sum of the
capacitances of each capacitor. Here, we have shown that this is true for two capacitors. It is
straightforward to generalize to an arbitrary number of capacitors coupled in parallel:

C = Z C;
i
where the sum over ¢ runs from 1 to N = the number of capacitors coupled in parallel.
13) The total voltage drop across the two capacitors coupled in series is
AV = AV + AV,

Since C; = Q/AV; and Cy = Q/AV,, we may write

QR Q ( 1 1 )
AV =24 % 0=+ =
"Tate %o te
The total capacitance is
_Q
¢= AV

So we obtain . |\
o= (4 +2)
e

In other words: The inverse capacitance of two capacitors coupled in series equals the sum of
the inverse capacitances of each capacitor. Here, we have shown that this is true with two
capacitors. It is straightforward to generalize to an arbitrary number of capacitors:

1 Z 1
c — C;
where the sum over ¢ runs from 1 to N = the number of capacitors coupled in series.

14) The electric field from the two capacitor plates will induce charge on the upper and lower
surface of the inserted metal sheet. In equilibrium, we must have zero electric field inside the
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metal sheet. This is achieved if the induced charge is —() on the upper surface and ) on the
lower surface of the metal sheet. Why exactly —@) and Q7 Well, because the electric field from
an infinitely large charged plane is independent of the distance to the plane, and given by the
surface charge density o:
Ey =0/2¢

In our case, 0 = QQ/A, where A is the plate area. The direction of the field from a charged
plane is away from the plane if it is positively charged and towards the plane if it is negatively
charged. Our system then becomes as shown in the figure. With e.g. the y axis upwards, the
different contributions to the total electric field in the different regions of space then are either
(—0/2e9)y or (0/2€y)y, see the figure.

I A
1¢ ﬂ/ 3 4 =0

2 b -Q=-0A ﬁ

(-ol2e,)y

3 Q=0A

v

4 —-Q=-0A

W ? W %1(0/250)9

So we have essentially 4 infinitely large planes, two with charge density o (1 and 3) and two
with charge density —o (2 and 4). In the figure, we have drawn the contributions from each of
the four planes in all the five ”different” regions. The total electric field is simply the vector
sum in each region, so

E=0

on the outside, and inside the metallic sheet. In the two regions between the metallic sheet and
the capacitor plates we see that the field becomes

E=-24
€0

i.e., the same as before we inserted the metal sheet.
Finally, to what the question was all about, namely the potential difference between the capac-
itor plates. Without the metallic sheet present, the potential difference becomes

+)
AV:—/ Eoa="¢
(-) )

because then E = (—o/gq)y everywhere between the plates. (We choose dl = dy 3.)
With the metal sheet present, the potential difference becomes
(+) d—h) od

PN T e S Gl
-) €0 3o



because now E = (—o/gg)y only in the two regions between the metal sheet and the capacitor
plates. These two regions have a total extent d — h = d — 2d/3 = d/3; inside the metal slab we
have £ = 0.

In conclusion: The potential difference becomes three times smaller.

Comment: This was a very lengthy solution. Nevertheless, I personally find the approach
suggested above a nice way of thinking in questions like these, with infinitely large charged
planes. The only thing we need to know is that the field from one plane is 0/2¢,, with direction
away from or towards the plane, with positive or negative charge, respectively. In addition, we
must of course know that £ = 0 inside a metal. Finally, we need to know that the superposition
principle applies for the electric field.

15) An infinitely large uniformly charged plane with charge pr unit area o creates a constant
electric field E = 0/2¢,. If o is positive, E is directed away from the plane, and opposite if
o is negative. Further, we know that the potential decreases if we move with the electric field.
Remember: Decreasing potential when we move away from a positive charge, since a positive
test charge must have decreasing potential energy when it moves away from a positive charge.
Here, we have a positively charged plane, so the potential will decrease when we move away
from the plane. Is has been chosen the value V' = —20 V on the plane, so V must here be
negative everywhere.

(If the plane had been negatively charged, with charge density ¢ = —4 nC/m?, we would have
had V =0 in a distance d = AV/E = AV - 2gy/oc =20-2-8.85-1072/4-107° ~ 0.09 m.)

16) If the electric field is Ey between the metal plates before we insert the two dielectric layers,
the field strength will be reduced by a factor 1/e,; inside dielectric number j (j = 1,2). Here,
€r; is the relative permittivity of dielectric j, i.e., ;1 = 4 and €,9 = 2. The field strength is not
changed in the vacuum layer between z = 2a and x = 3a. Hence:

1
E = ZEO 0<z<2a
E = E, 20 <z < 3a

1
E = §E0 3a <z < 5a

This means that the potential will decrease most slowly between 0 and 2a, fastest (more pre-
cisely: four times faster) between 2a and 3a, and ”intermediately” fast (more precisely: twice
as fast as between 0 and 2a) between 3a and 5a. Only curve 3 is consistent with this.

17) See question 7: There, we agreed that the electric field E must be constant throughout
the space between the two plates. Next, we must have P = 0 in the right half: No electric
dipoles to be aligned in vacuum! However, in the dielectric we have such electric dipoles that
are aligned, resulting in a polarization P with the same direction as E. But then it should be
clear that the electric displacement D = ¢y E + P becomes larger in the left half. This is also
consistent with what we said, that D can be associated with free charge: In question 7, we
concluded that we had the largest amount of free charge on the left half of the metal plates,
where we have the dielectric.

18) Starting from questions 7 and 17, we have agreed that the electric field is constant in the
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whole region between the plates, and also that the density of free charge on the metal plates is
biggest on the side where we have the dielectric present. Hence, we may write

o) 0;1) — oM

E, = — :
€0 €0
for the field in region 1, to the left, and
o _of!
€0 €0

for the field in region 2, to the right. Here, 0(!) and o® are total charge densities on the left and
right side, respectively, 0-501) and aj(?) are free charge density (on the metal plates) on the left and

right side, respectively, and ng) is induced charge density (on the surface of the dielectric) on
the left side. These fields are supposed to be equal, £y = F5 = E, and the potential difference
between the plates is determined by this field strength:

AV = Ed

Let us briefly repeat the various physical quantities that we introduced in the lectures when we
talked about polarization in linear media. We assumed that the polarization is proportional to
the electric field:

P = Xe{‘:oE

where x. = the susceptibility of the medium. With the definition
D=¢FE+ P
we could then write

D = ¢gE+ P
(1+ xe)eoE
ereo

= ¢F

where we had introduced €, = 1+ x. = the relative permittivity and € = ¢,6¢y = the permittivity
of the medium.
The electric dipole moment of the dielectric in region 1 is

pi = (0" A/2)d

so the polarization here becomes
b1 (1)

M= Qg =7

since the volume of region 1 is Ad/2. Then, the electric displacement in region 1 becomes

Dy =¢gE1+ P = af}) - 051) +ol) = 0}1)

1
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In region 2, we have P, = 0, so that
D2 = EoEQ = 0';2)
At the same time, we have
D1 = €E1
Let us look at what the total charge on the metal plates is:
Ao @
A
== 5 (D1 + DQ)
A
= 5 (8E1 + 60E2)

A
= 5E (e + €0)

AAV
3 q et

Pr definition, the capacitance of the capacitor is

N

so here we have
e +1

2

02%80(8T+1): CO
with C() = EoA/d.

It should perhaps not come as a big surprise that this capacitor can be viewed as two capacitors
coupled in parallel, both with plate area A/2, plate distance d, and one of them filled with
vacuum and the other filled with a dielectric with permittivity ¢ = ,69. Thus, we could

actually have written down the result more or less directly, using the result in question 12.

19) This question is similar to the previous one, except that we have here effectively two
capacitors coupled in series instead of parallel. Let us try the simple solution first, equipped
with the wisdom learnt in question 18. The two capacitances, coupled in series both have plate
area A and distance between the plates d/2. One of them is filled with air/vacuum and the
other is filled with a dielectric with permittivity ¢ = €,69. Then we may use the result found
in question 13. The capacitance of the half filled with dielectric is

A
Cl = Sd—/Q = 287«803
whereas the capacitance of the half filled with air is
A A
= _— = 2 —
o =cogp = 207
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Total capacitance is then, according to question 13
1 1\7!
- (5
¢ G

A 1 1\ !
- 508(2_6,+§>
B A 2,
- 11

2e,
er+1 0

Also in this question, we may go the long way via electric displacement, induced and free charge
etc., and determine the relation between total free charge () and the potential difference AV'.
We have:

D=o f= Q / A

In this case, D is constant throughout the region between the plates since the free charge is
uniformly distributed over the metal plates (no difference between right and left here). Next,
we have

DZEEl

for the relation between electric displacement and electric field in region 1 (i.e., the lower half
with dielectric). Furthermore,
D= EoEQ

for the relation between electric displacement and electric field in region 2 (i.e., the upper half,
with vacuum). The potential difference between the plates is
d d

AV=E -5 +EB

which is found by taking the line integral of E from one of the plates to the other. But now
we have more or less what we need:

d d
AV = Ei-5+B -

2
d/D D
- 1(2+2)
2 \e €0

o d [ Q Q)
26 (Aa, + A
QRd 1+e,
2€0A Er

so that
Q _ 2e0A Er 2e,

“AV d .1+5T: 1+e,
In other words, the same as found above, by simply using the formula for two capacitances
coupled in series!

C Co
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20) Here, the electric field in the region between the inner and outer metal cylinder is given in
the text, so it’s just a question of calculating the potential difference:

AV = Va—v,,=—/aE(r)dr
b

_ A fhar
e lda 1

A
= Q—M(lnb—lna)
= @ lné
 2mel a

Hence, the capacitance of the cylindrical capacitor becomes

_ Q _ 2mel
AV Inb/a

The biggest problem here is perhaps keeping track of the overall sign, and for example end
up with alternative C. However, then you must remember: A capacitance is, pr definition,
a positive quantity. Since a < b, alternative D simply must be the correct one, because the
logarithm of a number smaller than 1 is negative.

Another thing to note, perhaps, is that we will have the high value of the electric potential at the
positive conductor. This follows from the definition of electric potential, in terms of potential
energy pr unit charge. Imagine a small positive charge. It must obviously have the largest
potential energy if we choose to put it in a position near the positively charged conductor.
Hence, here is also the highest value of the electric potential. For a small negative charge, it is
opposite: It will have the highest potential energy if we choose to put it in a position near the
negatively charged conductor. So, here we must have the lowest value of the electric potential,
so that when we multiply the value of the potential with the negative value of the charge, we
end up with (the largest) positive value of the potential energy.

One final comment: Do you think this exercise required a lot of work? I agree. The midterm
exam will contain 40 questions. Obviously, this cannot be 40 questions that require as much
work as some of the questions above. This applies in particular to some of the last questions,
which really required hard work, much because it’s new and unfamiliar topics. On the other
hand: Questions like nr 5 should not take too long time. Either you know that £ = 0 inside a
metal sphere in equilibrium, or you don’t!

With 40 questions and 3 hours, you will have 4.5 minutes for each question. Since all correctly
answered questions count equally, it may be a good idea to do the ”quick ones” first.
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