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Exercise 1

Kirchhoff’s voltage rule (K2) gives

E =
Q

C
= RIR

while Kirchhoff’s current rule (K1) gives

I = IC + IR

Furthermore, we have

IC =
dQ

dt

Hence:

IR(t) =
V0

R
cos ωt

Q(t) = V0C cos ωt

IC(t) = −ωCV0 sin ωt = ωCV0 cos(ωt + π/2)

Total current delivered by the source is therefore

I(t) =
V0

R
cos ωt− ωCV0 sin ωt

We want I(t) on the form
I(t) = I0 cos(ωt− α)

with amplitude I0 = V0/Z, where Z is the impedance of the parallel circuit of R and C, whereas
α is the phase constant, i.e., the phase difference between E(t) and I(t). We have

cos(ωt − α) = cos ωt cos α + sin ωt sin α

Hence, by direct comparison:

cos α

Z
=

1

R
sin α

Z
= −ωC
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These two equations, with the unknowns Z and α, are easily solved. We find

Z =
R

√

1 + (ωRC)2

I0 =
V0

R

√

1 + (ωRC)2

α = − arctan(ωRC)

In the limit ω → 0 we should find ”well known” results from the DC examples in the lectures,
and we do: Z → R and α → 0 so that I0 → V0/R. All the current goes through R, whereas
the capacitance C now represents an open circuit, transmitting no direct current.

With the given numerical values we have:

ωRC = 2π · 106 · 10 · 16 · 10−9 = 1.0

so that

I0 =
1.0

10
·
√

2 = 0.14 A

α = − arctan 1.0 = −45◦

Sketch of E(t), I(t), IR(t) and IC(t):
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Sketch of α, I0 and Z (with α in radians and ωRC between 0.016 and 160 along the horizontal
axis).
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Exercise 2

In the first experiment, B = 0. Then, Newton’s second law is:

F = ma = qE

⇒ dv

dt
=

q

m
E

⇒ v(t) = v(0) +
q

m
Et =

dr

dt

⇒ r(t) = r(0) + v(0)t +
q

2m
Et2

Here, it is natural to choose t = 0 the moment the particle enters the region with E 6= 0, and
furthermore, to choose the origin in this position:

r(0) = (x0, y0) = (0, 0)

Here, the velocity is
v(0) = v x̂

when we orient the x axis towards the right. The y axis is oriented upwards, so that

E = −E ŷ

(i.e., with E > 0) The particle trajectory thus becomes a parabola, just like when we throw a
mass in the field of gravity. The velocity in the x direction is not affected by the electric field,
so

x(t) = vt

whereas the particle obtains a constant acceleration in the y direction, i.e., the displacement in
the y direction, as a function of t, must be determined by

y(t) = − q

2m
Et2

The particle will leave the region where E 6= 0 at the moment

tL =
x(tL)

v
=

L

v
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The vertical position is then

y(tL) = − q

2m
E

L2

v2

Already, we may conclude that q < 0 if y(tL) > 0.
The distance from x = L to x = L + D is then traveled without influence from any kind of
forces, and with a direction relative to the x axis in terms of the angle α, where

tanα =
vy(tL)

vx(tL)
=

− q

m
E L

v

v
= −qEL

mv2

Besides, we must have

tan α =
y − y(tL)

D

where y is where the electron hits the detector, at x = L + D.

The experiment is then repeated with the same E-field, but now we turn on a magnetic field B
directed into the plane, so that the particles are no longer deflected by the fields. This implies
that the electric force (upwards) is exactly balanced by the magnetic force (downwards). In
other words:

F = qE + qv × B = 0

⇒ E = vB

⇒ 1

v
=

B

E

Hence:

y − y(tL)

D
= −qEL

mv2
= −qEL

m
· B2

E2

⇒ y +
q

2m
EL2

B2

E2
= −qEL

m
· B2

E2
D

⇒ yE = − q

m
· B2

(

DL +
1

2
L2

)

⇒ q

m
= − yE

B2

(

DL + 1

2
L2

)

I.e.,

a =
E

B2 (DL + L2/2)

Exercise 3

a) The speed of the ions when they enter the region with magnetic field is determined by the
change in potential energy, going through the voltage difference V , being equal to the change
in the kinetic energy of the ions:

eV =
1

2
mv2 ⇒ v =

√

2eV

m
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The centripetal acceleration inside the magnetic field is

a =
v2

r

so that Newton’s 2. law gives

F = m
v2

r
= evB ⇒ r =

mv

eB

Radius for the resulting circular path for a particle with mass m becomes

r =
1

B

√

2V m

e

i.e., proportional with
√

m. Radii and masses for the different isotopes must be related as
follows:

ri

rj

=

√

mi

mj

where i, j = 79 or 81.
If the points where the ions hit the photographic plate are supposed to be separated by a
distance of (at least) a = 1.0 cm, the diameter of the two circular paths must differ by 1.0 cm.
We obtain

a = 1.0 cm = 2(r81 − r79) = 2r79

(√

m81

m79

− 1

)

This gives

r79 =
a

2

(√

m81

m79

− 1

)

−1

= 0.5 cm ·




√

81

79
− 1





−1

≃ 39.7 cm

and
r81 = r79 +

a

2
≃ 40.2 cm

Now, we can determine how strong magnetic field that can be used to achieve these radii:

B =
1

r81

√

2V m81

e
=

1

0.402
·
√

2 · 400 · 81 · 1.67 · 10−27

1.6 · 10−19
= 0.065 T

This represents the upper limit of B: A stronger magnetic field will reduce both r79 and r81,
but r81 the most, so that the ”hit points” move closer to each other. However, at the same time
the diameter d81 = 2r81 must not be larger than the physical limit of the instrument, given by
L = 250cm. That corresponds to a minimum value of the magnetic field strength:

Bmin =
1

L/2

√

2V m81

e
=

1

1.25
·
√

2 · 400 · 81 · 1.67 · 10−27

1.6 · 10−19
= 0.021 T

In other words, we may use a magnetic field between 21 and 65 mT.
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