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Negative Absolute Temperature for
Motional Degrees of Freedom
S. Braun,1,2 J. P. Ronzheimer,1,2 M. Schreiber,1,2 S. S. Hodgman,1,2 T. Rom,1,2

I. Bloch,1,2 U. Schneider1,2*

Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probability Pi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a

1Fakultät für Physik, Ludwig-Maximilians-Universität München,
Schellingstraße 4, 80799Munich, Germany. 2Max-Planck-Institut
für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching,
Germany.
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sufficiently deep optical lattice are described by
the Bose-Hubbard Hamiltonian (12)

H ¼ −J ∑
〈i;j〉

b%
†
i b
%
j þ U

2
∑
i
n%iðn%i − 1Þ þ V∑

i
r2i n% i ð2Þ

Here, J is the tunneling matrix element be-
tween neighboring lattice sites 〈i, j〉, and b%i and
b%
†
i are the annihilation and creation operator,
respectively, for a boson on site i,U is the on-site
interaction energy, n% i ¼ b%

†
i b
%
i is the local number

operator, and V º w2 describes the external har-
monic confinement, with ri denoting the posi-

tion of site i with respect to the trap center and w
the trap frequency.

In Fig. 1B, we show how lower and upper
bounds can be realized for the three terms in the
Hubbard Hamiltonian. The restriction to a single
band naturally provides lower and upper bounds
for the kinetic energy Ekin, but the interaction
term Eint presents a challenge: Because in prin-
ciple all bosons could occupy the same lattice
site, the interaction energy can diverge in the
thermodynamic limit. For repulsive interactions
(U > 0), the interaction energy is only bounded

from below but not from above, thereby limiting
the system to positive temperatures; in contrast,
for attractive interactions (U < 0), only an upper
bound for the interaction energy is established,
rendering positive temperature ensembles unsta-
ble. The situation is different for the Fermi-Hubbard
model, where the Pauli principle enforces an up-
per limit on the interaction energy per atom of
U/2 and thereby allows negative temperatures
even in the repulsive case (13, 14). Similarly, a
trapping potential V > 0 only provides a lower
bound for the potential energy Epot, whereas an

Fig. 1. Negative absolute temperature in optical lattices. (A) Sketch of entropy
as a function of energy in a canonical ensemble possessing both lower (Emin) and
upper (Emax) energy bounds. (Insets) Sample occupation distributions of single-
particle states for positive, infinite, and negative temperature, assuming a weakly
interacting ensemble. (B) Energy bounds of the three terms of the 2D Bose-
Hubbard Hamiltonian: kinetic (Ekin), interaction (Eint), and potential (Epot) energy.
(C) Measured momentum distributions (TOF images) for positive (left) and neg-
ative (right) temperature states. Both images are averages of about 20 shots;
both optical densities (OD) are individually scaled. The contour plots below show
the tight-binding dispersion relation; momenta with large occupation are high-
lighted. The white square in the center indicates the first Brillouin zone.

Fig. 2. Experimental sequence and TOF images. (A) Top to bottom: lattice
depth, horizontal trap frequency, and scattering length as a function of
time. Blue indicates the sequence for positive, red for negative temper-
ature of the final state. (B) TOF images of the atomic cloud at various times
t in the sequence. Blue borders indicate positive, red negative temper-

atures. The initial picture in a shallow lattice at t = 6.8 ms is taken once for
a scattering length of a = 309(5) a0 (top) as in the sequence, and once for
a = 33(1) a0 (bottom; OD rescaled by a factor of 0.25), comparable to the
final images. All images are averages of about 20 individual shots. See
also Fig. 1C.
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anti-trapping potential V < 0 creates an upper
bound.Therefore, stable negative temperature states
with bosons can exist only for attractive interac-
tions and an anti-trapping potential.

To bridge the transition between positive and
negative temperatures, we used the n = 1 Mott
insulator (15) close to the atomic limit (|U |/J →∞),
which can be approximated by a product of Fock
states jY〉 ¼ ∏ib

%†
i j0〉. Because this state is amany-

body eigenstate in both the repulsive and the at-
tractive case, it allows us to switch between these
regimes, ideally without producing entropy. The
employed sequence (Fig. 2A) is based on a pro-
posal by Rapp et al. (4), building on previous ideas
by Mosk (3). It essentially consists of loading a
repulsively interacting Bose-Einstein condensate
(BEC) into the deep Mott insulating regime (I in
Fig. 2A), switching U and V to negative values
(II), and finally melting the Mott insulator again
by reducing |U |/J (III). For comparison, we also
created a final positive temperature state with an
analog sequence.

The experiment startedwith a BEC of 1.1(2) ×
105 39K atoms in a pure dipole trap with hori-
zontal trap frequency wdip (V > 0) at positive
temperature (T > 0) and a scattering length of a =
309(5) a0, with a0 the Bohr radius. We ramped
up a three-dimensional (3D) optical lattice (I) with
simple cubic symmetry to a depth of Vlat = 22(1)
Er. Here, Er ¼ h2=ð2ml2latÞ is the recoil energy
with Planck’s constant h, the atomic mass m,
and the lattice wavelength llat = 736.65 nm. The
blue-detuned optical lattice provides an overall
anti-trapping potential with a formally imaginary
horizontal trap frequency wlat that reduces the
confinement of the dipole trap, giving an effective
horizontal trap frequencywhor ¼ ðw2

dip þ w2
latÞ1=2.

Once the atoms are in the deep Mott insulating
regime where tunneling can essentially be ne-

glected [tunneling time t = h/(2pJ ) = 10(2) ms],
we set the desired attractive (repulsive) interac-
tions (II) to prepare a final negative (positive)
temperature state using a Feshbach resonance
(16). Simultaneously, we decreased the horizon-
tal confinement to an overall anti-trapping (trap-
ping) potential by reducing wdip. Subsequently,
we lowered the horizontal lattice depths (III), yield-
ing a final value ofU/J = −2.1(1) [U/J = +1.9(1)],
and probed the resulting momentum distribution
by absorption imaging after 7 ms time-of-flight
(TOF). The whole sequence was experimentally
optimized to maximize the visibility of the final
negative temperature state. We chose a 2D geom-
etry for the final state to enable strong anti-trapping
potentials and to avoid detrimental effects due to
gravity (9).

In Fig. 2B, we show TOF images of the cloud
for various times t in the sequence, indicated in
Fig. 2A. During the initial lattice ramp [at Vlat =
6.1(1)Er], interference peaks of the superfluid
in the lattice can be observed (t = 6.8 ms) (Fig.
2B, top). Because quantum depletion caused by
the strong repulsive interactions already reduces
the visibility of the interference peaks in this
image (17), we also show the initial superfluid for
identical lattice and dipole ramps, but at a scat-
tering length of a = 33(1) a0 (t = 6.8 ms) (Fig. 2B,
bottom). The interference peaks are lost as the
Mott insulating regime is entered (t = 25 ms). In
the deep lattice, only weak nearest-neighbor cor-
relations are expected, resulting in similar images
for both repulsive and attractive interactions (t =
28ms). After reducing the horizontal lattice depths

back into the superfluid regime, the coherence
of the atomic sample emerges again. For positive
temperatures, the final image at t = 30.5 ms is
comparable, albeit somewhat heated, to the ini-
tial one at t = 6.8 ms, whereas for attractive in-
teractions, sharp peaks show up in the corners of
the first Brillouin zone, indicating macroscopic
occupation ofmaximumkinetic energy. The spon-
taneous development of these sharp interference
peaks is a striking signature of a stable negative
temperature state formotional degrees of freedom.
In principle, the system can enter the negative
temperature regime following one of two routes:
It either stays close to thermal equilibrium during
the entire sequence or, alternatively, relaxes toward
a thermal distribution during lattice ramp-down.
Either way demonstrates the thermodynamic sta-
bility of this negative temperature state.

To examine the degree of thermalization in
the final states, we used band-mapped (18) im-
ages and extracted the kinetic energy distribution,
assuming a noninteracting lattice dispersion rela-
tion Ekin(qx,qy). The result is shown in Fig. 3,
displaying very good agreement with a fitted
Bose-Einstein distribution. The fitted tempera-
tures of T = −2.2J/kB and T = 2.7J/kB for the two
cases only represent upper bounds for the ab-
solute values |T | of the average temperature be-
cause the fits neglect the inhomogeneous filling
of the sample (9). Both temperatures are slight-
ly larger than the critical temperature |TBKT| ≈
1.8J/kB (19) for the superfluid transition in an
infinite 2D system but lie below the condensation
temperature |TC| = 3.4(2)J/kB of noninteracting

Fig. 3. Occupation distributions. The occupation
of the kinetic energies within the first Brillouin
zone is plotted for the final positive (blue) and neg-
ative (red) temperature states. Points show exper-
imental data extracted from band-mapped pictures.
Solid lines are fits to a noninteracting Bose-Einstein
distributionassumingahomogeneous system. (Insets)
Top row: Symmetrized positive (left) and negative
(right) temperature images of the quasimomentum
distribution in the horizontal plane. Bottom row:
Fitted distributions for the two cases. All distribu-
tions are broadened by the in situ cloud size (9).

Fig. 4. Stability of the positive (blue) and negative (red) temperature states. Main figure: Visibility
V = (nb − nr)/(nb + nr) extracted from the atom numbers in the black (nb) and red (nr) boxes (indicated in
the TOF images) plotted versus hold time in the final state for various horizontal trap frequencies. Dark
red, |whor|/2p = 43(1) Hz anti-trapping; medium red, 22(3) Hz anti-trapping; light red, 42(3) Hz trapping;
blue, 45(3) Hz trapping. (Inset) Coherence lifetimes t extracted from exponential fits (solid lines in main
figure). The statistical error bars from the fits are smaller than the data points. The color scale of the
images is identical to Fig. 2B (see also fig. S3).
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bosons in a 2D harmonic trap for the given av-
erage density (9).

Ideally, entropy is produced during the se-
quence only in the superfluid/normal shell around
the interim Mott insulator: While ramping to the
deep lattice, the atoms in this shell localize to
individual lattice sites and can subsequently be
described as a |T | = ∞ system (14). Numerical
calculations have shown that the total entropy
produced in this process can be small (4), because
most of the atoms are located in the Mott insu-
lating core. We attribute the observed additional
heating during the sequence to nonadiabaticities
during lattice ramp-down and residual double oc-
cupancies in the interim Mott insulator.

In principle, the coherence length of the atomic
sample can be extracted from the interference
pattern recorded after a long TOF (20). How-
ever, the experiment was limited to finite TOF,
where the momentum distribution is convolved
with the initial spatial distribution. By comparing
the measured TOF images with theoretically ex-
pected distributions, we were able to extract a
coherence length in the final negative tempera-
ture state of three to five lattice constants (9).

To demonstrate the stability of the observed
negative temperature state, Fig. 4 shows the vis-
ibility of the interference pattern as a function of
hold time in the final lattice. The resulting life-
time of the coherence in the final negative tem-
perature state crucially depends on the horizontal
trap frequencies (inset): Lifetimes exceed t =
600 ms for an optimally chosen anti-trapping po-
tential, but an increasingly fast loss of coherence
is visible for less anti-trapping geometries. In the
case of trapping potentials, the ensemble can even
return to metastable positive temperatures, giving
rise to the small negative visibilities observed af-
ter longer hold times (fig. S4). The loss of coher-
ence probably originates from amismatch between
the attractive mean field and the external poten-
tial, which acts as an effective potential and leads
to fast dephasing between lattice sites.

The high stability of the negative temperature
state for the optimally chosen anti-trapping poten-
tial indicates that the final chemical potential is
matched throughout the sample such that no glob-
al redistribution of atoms is necessary. The re-
maining slow decay of coherence is not specific
to the negative temperature state because we also
observe comparable heating for the correspond-
ing positive temperature case (blue data in Fig. 4),
as well as the initial superfluid in the lattice. It
probably originates from three-body losses and
light-assisted collisions. In contrast to metastable
excited states (21), this isolated negative tem-
perature ensemble is intrinsically stable and
cannot decay into states at lower kinetic energies.
It represents a stable bosonic ensemble at attract-
ive interactions for arbitrary atom numbers; the
negative temperature stabilizes the system against
mean-field collapse that is driven by the negative
pressure.

Negative temperature states can be exploited
to investigate the Mott insulator transition (22) as

well as the renormalization ofHubbard parameters
(23, 24) for attractive interactions. As the stabil-
ity of the attractive gas relies on the bounded
kinetic energy in the Hubbard model, it naturally
allows a controlled study of the transition from
stable to unstable by lowering the lattice depth,
thereby connecting this regime with the study
of collapsing BECs (25), which is also of interest
for cosmology (26). Negative temperatures also
considerably enhance the parameter space acces-
sible for quantum simulations in optical lattices,
because they enable the study of newmany-body
systems whenever the bands are not symmetric
with respect to the inversion of kinetic energy.
This is the case, for example, in triangular or
Kagomé lattices, where in current implementa-
tions (27) the interesting flat band is the highest
of three sub-bands. In fermionic systems, nega-
tive temperatures enable, for example, the study
of the attractive three-component model with
symmetric interactions [SU(3)] describing color
superfluidity and trion (baryon) formation using
repulsive 173Yb (28), where low losses and sym-
metric interactions are expected but magnetic
Feshbach resonances are absent.
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Current-Driven Spin Dynamics
of Artificially Constructed
Quantum Magnets
Alexander Ako Khajetoorians,1* Benjamin Baxevanis,2 Christoph Hübner,2 Tobias Schlenk,1

Stefan Krause,1 Tim Oliver Wehling,3,4 Samir Lounis,5 Alexander Lichtenstein,2

Daniela Pfannkuche,2 Jens Wiebe,1* Roland Wiesendanger1

The future of nanoscale spin-based technologies hinges on a fundamental understanding and
dynamic control of atomic-scale magnets. The role of the substrate conduction electrons on
the dynamics of supported atomic magnets is still a question of interest lacking experimental
insight. We characterized the temperature-dependent dynamical response of artificially constructed
magnets, composed of a few exchange-coupled atomic spins adsorbed on a metallic substrate,
to spin-polarized currents driven and read out by a magnetic scanning tunneling microscope
tip. The dynamics, reflected by two-state spin noise, is quantified by a model that considers the
interplay between quantum tunneling and sequential spin transitions driven by electron spin-flip
processes and accounts for an observed spin-transfer torque effect.

Formagnetic storage technology (1), where
magnets representbits of information (2,3),
effective manipulation of the magnetization

without a magnetic field is of crucial importance.
All-electrical manipulation offers technological
advantages, such as highly localized bit control
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