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NORGES TEKNISK-
NATURVITENSKAPELIGE UNIVERSITET
INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK

Contact during exam:
Jon Andreas Stgvneng
Phone: 73 59 36 63 / 45 45 55 33

EXAM TEP4145 KLASSISK MEKANIKK
Thursday 16. August 2007 kl. 1200 - 1600
English version

Remedies: C

e K. Rottmann: Mathematical formulae

e Approved calculator, with empty memory, according to list worked out by NTNU. (HP30S or
similar.)

Page 2 - 6: The questions
Page 7: Some formulas

The exam consists of 5 questions. The weight for each question is given. Do questions 1, 2 and 3,
and either question 4 (physics) or 5 (cybernetics).

Note that Einstein’s summation convention is used unless otherwise stated, i.e., summation over
repeated indices.

The grades will be ready in August.
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QUESTION 1 [Counts 30%]

A spherical pendulum consists of a mass m attached to the end of a massless rod of length [. The
other end of the rod is attached at the origin. In other words, the mass may move on a spherical
shell of radius [, hence the name. The system is in the gravitational field.
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a) Show that the Lagrangian of the system is
mi? o oo
L= T («9 + ¢”sin 0) + mgl cos

when we choose V' =0 in z = 0, and use generalized coordinates # and ¢ as shown in the figure.

b) Explain how you immediately can say that the canonical momentum p, is a constant of the motion.
Show that p, is identical to the z-component of the angular momentum, i.e., (r x mv),.

¢) Introduce the constant

v = ¢sin?f = Pe
ml?

and show that Lagrange’s equation for the coordinate # becomes
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d) One possibility is that the mass moves in a horizontal circle, at constant § = ;. Show that the
period (time of revolution) then becomes

{ cos B,
g

T¢:27T

e) Another possibility is that the mass "oscillates” around 6y, i.e., 8(t) = 6y + «(t). Assume small
oscillations, i.e. |a] < 6y (and hence |a] < 1), and show that the motion of the pendulum is
described by the equation

a4+« %COSQO (4—|—tan20@) =0

f) What is the oscillation period T,? Calculate the ratio between the time of revolution and the
oscillation period, i.e., T,,/T,, and sketch this ratio as a function of the angle 6.
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QUESTION 2 [Counts 30%)]

A particle of mass m moves in a spherically symmetric potential V(7). It can be shown that the
motion is in a plane perpendicular to the direction of the angular momentum L, which is a constant
of the motion, with |L| = |r x p| = .

a) Determine the Lagrangian L. = T — V of the particle, using the polar coordinates r and 6 as
generalized coordinates. (Don’t confuse the Lagrangian L with the angular momentum L.)

b) Show that Lagrange’s equation for # becomes

% (mr29) =0.

Show that this expresses conservation of the angular momentum.

c¢) Show that Lagrange’s equation for r becomes
mit — mrf? = f(r),

where f(r) = —0V/0r is the force acting on the particle.

d) Use the equations and the information given above to derive the following differential equation
foru=1/r:

d*u m
=T 0

e) If the particle moves in a 1/r-potential, the path will be described by the conic section

o
) = &
r(©) 1+ ecosf’

where o and ¢ are constants. Use the differential equation of the orbit in d) to verify this. (Assume
V(o) =0.)

f) Next, assume that the particle follows the spiral orbit
r(0) = roe,

where 7 is a constant. Find the potential V' (r) in which this particle moves.
(Also here, assume V' (o0) = 0.)
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QUESTION 3 [Counts 15%.]

A one-dimensional anharmonic oscillator may be described with the Lagrangian

1 1
L(z, &) = 59’52 - 5‘”2372 — ar® + Bri?

where the mass of the oscillator equals 1.

a) What is the Hamiltonian H(x,p) of the anharmonic oscillator?

A one-dimensional harmonic oscillator may be described with the Lagrangian

and the Hamiltonian

b) Write
L=1Ly+6L

and
H=Hy,+d/H

for the anharmonic oscillator, and show that for small oscillations (i.e., |ar| < w? and |Bz| < 1),
the "extra terms” in L and H are equal, but with opposite signs, i.e.,

0L = —0H.
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QUESTION 4 [For physics students, counts 25%.]

A possible Lagrangian for a relativistic particle with mass m, moving in a conservative potential
V(ZEZ), 1S

2
L=-"_v
Y

a) Show that this Lagrangian results in Lagrange equations corresponding to a generalized version

of Newton’s 2. law,

d
—pi=F
a?

Here, p; are spatial components (i = 1,2, 3) of the four-momentum p,,.

b) Show that the Hamiltonian
H=vp;— L

then equals the total energy of the particle.

Let the particle be an electron with mass m = m, and charge ¢ = —e, starting at the origin with
zero velocity at time ¢t = 0, and let the potential represent a uniform electric field pointing along —z,
ie.,

V(z) = qEyx

¢) Write down the Lagrange equation for the electron and show that its speed becomes

B eEot/me
1+ (eEot/mc)?

x

d) Solve this equation and find the path z(t) of the electron. Check that your answer makes sense,
both for small and for large values of t.
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QUESTION 5 [For cybernetics students, counts 25%.]

In Norwegian only.

a) Den aller enkleste differensligningen er gitt ved relasjonen

Ap+1 = T Qp,
der n > 0 mens r er et reelt tall. Anta at verdien ag er kjent, og skriv ned uttrykket for den generelle
Q-
b) En representasjon av den linesere, homogene differensligningen av annen orden er

Gpy1 =bay, +cay,_q,

der n > 1 mens b og c er reelle tall. Sett som prgvelgsning

a, =Cr",
og utled direkte fra differensligningen den karakteristiske annengradsligningen.
¢) Anta at det er to distinkte rotter r; og o for annengradsligningen i punkt b). Det oppgis at alle

folger
ap =c117 +cory,

der ¢; og ¢y er konstanter, er lgsninger av
Qpi1 =bay, +cay_q.

Sett opp et system for de to ukjente koeflisientene c¢; og ¢y, og bestem eksplisitte uttrykk for ¢; og cs,
dvs uttrykt ved de kjente storrelsene 71, 75, ag og a;. (HINT: Bruk gjerne Cramers regel ved lgsning
av systemet med de to ukjente.)

d) Betrakt folgen {F),} av Fibonaccitall, definert ved

Fn+1:Fn+Fn—17

der F() = F1 = 1. Gitt at
Fn = 0171?“—027“3,

bestem de to distinkte rgttene r; og o ved a lgse den tilhgrende karakteristiske annengradsligningen.
(HINT: Denne ligningen kan lgses direkte ut fra analysen i punkt b).)



The validity of the formulas and the meaning of the symbols are assumed to be known.

e Hamilton’s equations:

e Lagrange’s equations:

e The Lorentz factor:

e Four-vector:

e Proper time 7 defined by:

e Four-velocity:

e Four-momentum:

e Four-potential:

e Electromagnetic field:

Some formulas

oH . oH

qZ - apz ) pZ - an
doL oL
dtdg;  Oq;

V=112 B=vje

x, = (r,ict)

dz, dx, = —c*dr?
dx .
T Cl—’: = 7(”? ZC)

pu = mu, = y(mwv,imc)

AHZ(A>Z¢/C)

0A

E = — _
Vo ot
B=VxA

e Lorentz transformation (with relative velocity v = vz):

Log = Lg3 =1, L1y =Lyy=7 , L14=—L41:i57

e Trigonometric relations:

e For |z| < 1 we have:

cos(a+b) = cosacosbFsinasinb

sin(a£b) = sinacosb= cosasinb

(I+2z)"~14nxr cosz~1 sinzx~z
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