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NORGES TEKNISK-
NATURVITENSKAPELIGE UNIVERSITET
INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK

Contact during exam:
Jon Andreas Støvneng
Phone: 73 59 36 63 / 45 45 55 33

EXAM TEP4145 KLASSISK MEKANIKK
Monday 21. May 2007 kl. 0900 - 1300

English version

Remedies: C

• K. Rottmann: Mathematical formulae

• Approved calculator, with empty memory, according to list worked out by NTNU. (HP30S or
similar.)

Appendix A: The questions (Page 2 - 6).
Appendix B: Formulas (Page 7 - 8).

The exam consists of 5 questions. The weight for each question is given. Do questions 1, 2 and 3,
and either question 4 (physics) or 5 (cybernetics).
Note that Einstein’s summation convention is used unless otherwise stated, i.e., summation over
repeated indices.

The grades will be ready around June 12.
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Appendix A: The questions

QUESTION 1 [Counts 25%]

a) Derive Lagrange’s equation,
d

dt

∂L

∂q̇
− ∂L

∂q
= 0,

from Hamilton’s principle

δI = δ
∫ t2

t1
L(q, q̇, t) dt = 0.

Here, there is no variation in the end points, and virtual variations in the coordinate q is performed
at fixed time t, i.e., δt = 0.

b) A point mass m slides without friction on a ring which rotates in the xy plane with constant
angular velocity ω0. The ring, with radius R, rotates around the origin x = y = 0, as shown in the
figure:

• Find the lagrangian L(θ, θ̇) of the mass m.
• Derive Lagrange’s equation, i.e., the equation of motion for the mass m.
• The equation of motion would have been the same if the mass m were swinging back and forth
at the end of a massless rod in the field of gravity (acceleration of gravity = g). Verify this, and
determine the length l of the rod.
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QUESTION 2 [Counts 25%]

Three spheres with mass m (sphere nr 1, to the left), 3m (sphere nr 2, in the middle), and 2m
(sphere nr 3, to the right), respectively, are connected via two identical (and ideal) springs with
spring constant k, as shown in the figure:

The springs can only be stretched, not bent. We assume that the spheres may only move along the x
axis, and we will here investigate oscillations around the equilibrium positions of the spheres. These
are x10, x20, and x30, respectively.
• Use the deviations from equilibrium, ηi = xi − xi0 (i = 1, 2, 3), as coordinates, and find the
(symmetric) matrices V and T in the quadratic expressions

V =
1

2
Vij ηi ηj

T =
1

2
Tij η̇i η̇j

for the potential and the kinetic energy of the system. Here, Vij and Tij are matrix elements of V

and T , respectively.
• Solve the secular equation,

∣

∣

∣V − ω2
T

∣

∣

∣ = 0,

and thus determine the two eigenfrequencies of the system, fα = ωα/2π (α = 1, 2). Find numerical
values of fα when m = 100 g and k = 103 N/m. (Neglect the mode with ω = 0, which corresponds
to pure translation of the system.)
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QUESTION 3 [Counts 25%.]

In this question, we will study a canonical transformation (q, p) → (Q, P ) of a simple one dimensional
harmonic oscillator (i =

√
−1):

Q(q, p) =
1√
2i

(q + ip)

P (q, p) =
−1√
2i

(q − ip)

For simplicity, we use m = k = 1 (m = mass and k = spring constant of the oscillator).
• What is the hamiltonian H(q, p) = T + V of this oscillator?
• Show that the given transformation (q, p) → (Q, P ) is canonical. Hint: Use the fact that Poisson
brackets are invariant under a canonical transformation, for example [q, p] = [Q, P ].
• Find the hamiltonian K(Q, P ) in the new coordinates Q, P . (Here, K = H)
• Find Hamilton’s equations for Q and P , and solve these equations, using the initial conditions
q(t = 0) = p(t = 0) = 1.
• What is the total energy of the oscillator?
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QUESTION 4 [For the physics students, counts 25%.]

a) The electromagnetic field tensor Fµν is defined as

Fµν = ∂µAν − ∂νAµ

(see formulas in appendix B for Aµ, and its relation to E and B). Find the elements of the matrix
F (i.e.: expressed in terms of the fields E and B).

b) Show that E · B is invariant under a Lorentz transformation. (Use the transformation equations
for the electromagnetic field given in appendix B.)

c) A point charge q passes through the origin at time t = 0 and moves with constant velocity v in
the positive x direction. Let us with S0 denote the inertial system where the point charge is at rest,
and with S denote the inertial system where the point charge moves with velocity vx̂. The electric
field at a distance r0 from the point charge is obviously

E0 =
q

4πε0

r0

r3
0

measured in S0. Furthermore, the electric field at a distance r from the point charge is

E =
q

4πε0

1 − β2

(1 − β2 sin2 θ)3/2

r

r3

measured in S. Here, θ denotes the angle between the x axis and r, see figure below. Show that the
magnetic field, measured in S, may be written as

B =
1

c2
v × E

d) Show that the magnetic field B from the moving point charge reduces to

B =
µ0

4π

qv × r

r3

in the nonrelativistic limit v ≪ c. Sketch field lines for B in the yz plane.
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QUESTION 5 [For cybernetics students, counts 25%.]

a) Let us investigate how the stock of a certain animal will develop in time. Assume - in the simplest
possible manner - that this number increases at a steady rate each year, i.e., there exists a µ > 1
such that

bn+1 = µ bn,

where bn is the stock in year n and bn+1 is the stock in year n + 1. What kind of equation is this,
and what is its general solution? Explain briefly why this model is unrealistic.

b) An improved model is obtained by letting B be an upper limit of the number of animals, and
defining the model by

bn+1 = µ bn

(

1 − bn

B

)

.

We introduce the relative stock,

xn =
bn

B
,

and hence we have
xn+1 = µ xn (1 − xn) .

Next, we define
Fµ(x) = µ x (1 − x) ,

which yields
xn+1 = Fµ(xn).

Make a simple sketch of Fµ(x), and write down the coordinates of the maximum point of the curve.
Let x0 be the intersection between the graph y = Fµ(x) and the graph y = x. Then, what is xn as a
function of x0? What kind of point is x0?

c) Define the concept ”fixed point” for a function f . Define the concept ”periodic point” for a
function f , and explain what is meant by ”grunnperiode” for the point. Explain/define ”attractive
fixed point” and ”repulsive fixed point” for a function f .

d) Finally, consider the function
Fµ(x) = µ x (1 − x) .

Determine the two fixed points of Fµ. Are the fixed points attractive or repulsive? Summarize your
answer by providing restrictions on µ. Let the upper limit of µ be 3. (Proofs are not necessary.)
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Appendix B: Formulas

The validity of the formulas and the meaning of the symbols are assumed to be known.

• Hamilton’s equations:

q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi

• Lagrange’s equations:
d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0

• Poisson brackets:

[f, g] =
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

[qi, qj] = [pi, pj] = 0

[qi, pj ] = δij

• Four-vector:
xµ = (r, ict)

• Four-potential:
Aµ = (A, iφ/c)

• Electromagnetic field:

E = −∇φ − ∂A

∂t

B = ∇× A

• Lorentz transformation (relative velocity v = vx̂):

L22 = L33 = 1 , L11 = L44 = γ , L14 = −L41 = iβγ

β = v/c , γ = 1/
√

1 − v2/c2
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• Lorentz transformation of electromagnetic field (inertial system S0 moves with velocity vx̂
relative to S):

Ex = E0x

Ey = γ(E0y + vB0z)

Ez = γ(E0z − vB0y)

Bx = B0x

By = γ(B0y −
v

c2
E0z)

Bz = γ(B0z +
v

c2
E0y)

• Trigonometric relations:

cos(a ± b) = cos a cos b ∓ sin a sin b

sin(a ± b) = sin a cos b ± cos a sin b


