
TFY4345 Classical Mechanics. Department of Physics, NTNU.

ASSIGNMENT 3 (Compulsory)

Question 1

Figure 1: Pendulums attached to an oscillating point. Left: the support is oscillating horizontally. Right:
the support is oscillating vertically.

(a) Consider a planar pendulum where the point of support is oscillating horizontally with a displacement
A cos γt. Here, A is the amplitude of oscillation and γ is the frequency. Write down the Lagrangian for this
system. Derive the equation of motion for θ. Consider the small angle approximation (θ ≪ 1) and show that
the equation of motion becomes a driven harmonic oscillator. Solve this equation. What is the resonance
frequency?

(b) Consider a planar pendulum where the point of support is oscillating vertically, again with a displace-
ment A cos γt. Write down the Lagrangian for this system. Derive the equation of motion for θ. Show that
the equation of motion has the same form as for an ordinary pendulum, but with an ”effective gravitational
field” having an oscillating part. (You are not asked to solve this equation.)
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Question 2

This part of the assignment will explore the dynamics of the pendulums on oscillating supports by direct
numerical integration of the equations of motion. Driven pendulums are conceptually simple mechanical
systems, that nonetheless can display quite complex and sometimes non-intuitive behavior.

In Question 1, you derived the following equation of motion for the pendulum with horizontally oscillating
support,

θ̈ = −ω2
0 sin θ +

Aγ2

ℓ
cos γt cos θ. (1)

Here, ω0 =
√
g/ℓ, the oscillation frequency of small oscillations of an ordinary pendulum (with A = 0). For

the pendulum with vertically oscillating support, you derived the equation of motion

θ̈ = −ω2
0 sin θ +

Aγ2

ℓ
cos γt sin θ. (2)

Numerical integration method

The equations of motion are second order differential equations in time. When doing numerical integration
it is more convenient to convert a second order differential equation into two first order equations. For
example, the equation with horizontally oscillating support can be expressed as

θ̇ = vθ, (3)

v̇θ = −ω2
0 sin θ +

Aγ2

ℓ
cos γt cos θ = F [θ, t]. (4)

Here, vθ = θ̇ is simply the angular velocity. At time t = 0, we must specify initial values θ(0) and vθ(0). We
may consider the function F [θ, t] as an effective force.

There are several methods available for integrating first order equations numerically, for example Runge-
Kutta. However, for Newton’s equations there exists a method which is remarkably stable and simple to
implement, the so-called ”Verlet algorithm”. Here, we will use the ”velocity Verlet algorithm” to integrate
the equations of motion for the pendulum. The velocity Verlet algorithm can be implemented in the following
way for the pendulum:

vθ(t+
∆t

2
) = vθ(t) + F [θ(t), t]

∆t

2
(5)

θ(t+∆t) = θ(t) + vθ(t+
∆t

2
)∆t (6)

vθ(t+∆t) = vθ(t+
∆t

2
) + F [θ(t+∆t), t+∆t]

∆t

2
(7)

This is a recipe for finding θ(t + ∆t) and vθ(t + ∆t) from θ(t) and vθ(t). Notice that in the first step we
calculate the velocity at the midpoint between t and t + ∆t, therefore the Verlet algorithm is sometimes
referred to as a midpoint method. In the second step we calculate the new ”position” θ(t+∆t) by using the
velocity at time t+∆t/2. In the third step we calculate the velocity at time t+∆t. The procedure is then
repeated. Notice that the time step ∆t is constant throughout the whole simulation, and it must be chosen
small enough so that the resulting numerical solution is sufficiently accurate, but not too small since that
would slow down the simulation. In practise, a good timestep ∆t may be found by some trial and error.
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Example program

The program pendulum.py is an implementation of the velocity Verlet algorithm for a simple pendulum,
i.e., without an oscillating support. Both θ and vθ are plotted as functions of time.

Part 1. Simulating a simple pendulum

Run the program pendulum.py in Python. Test the program with different values of the timestep ∆t and
different starting angles θ(0). You may choose vθ(0) = 0. Make sure you choose the final time such that the
pendulum undergoes several oscillations, for example 10.

The equation of motion implies conservation of the total mechanical energy of the simple pendulum:

E =
1

2
mℓ2θ̇2 +mgℓ (1− cos θ) . (8)

Here, zero potential is chosen for θ = 0. In a simulation the energy is not exactly conserved. The change
in energy over time in a simulation can be used as a measure of the exactness of the numerical integration.
For example, if the energy only changes by say 0.1% during the course of a simulation, we would normally
consider this a good numerical solution. However, if the total energy changes by for example 5%, the nu-
merical solution would be considered rather poor, and one would choose a smaller timestep.

� Calculate and plot the total energy of the simple pendulum as a function of time for different starting
angles θ(0). How large can ∆t (approximately) be before the energy changes by more than 0.1%?

� Calculate and plot the kinetic and potential energy. Show (Observe) that the virial theorem ⟨T ⟩ = ⟨V ⟩
holds when the pendulum oscillations are small (|θ| ≪ 1).

Part 2. Pendulum with oscillating support

� Write a program that simulates the horizontally oscillating pendulum (Eq. 1). You may use the
example program pendulum.py as a starting point.

� When the amplitude A and the driving frequency γ are both small, we expect that the driven pen-
dulum resembles an ordinary pendulum, with some small oscillatory perturbations around the normal
pendulum motion. Choose for example A = 0.05ℓ, γ = 0.2ω0, and plot θ and vθ as a function of time.
Make an educated guess on a suitable timestep ∆t and run one simulation. Repeat the simulation
with a smaller timestep ∆t/2, and check that you get the same results.

� Write a program that simulates the vertically oscillating pendulum (Eq. 2). This is very easy, you
only have to replace cos θ with sin θ in the equation of motion.
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Part 3. Resonance dynamics

The dynamics of driven pendulums may in general depend strongly both on the driving frequency γ and
the driving amplitude A.

� Characterize the resonance phenomena of the horizontally driven oscillator (Eq. 1) by studying the
dynamics of the pendulum as a function of the driving frequency and amplitude. The resonance can be
identified by plotting the oscillation amplitude of θ and also the average total energy E as a function
of γ. For small angles, you can compare your simulation results with the analytical solution valid for
θ ≪ 1 (Question 1a).

� Characterize the resonance phenomena of the vertically driven oscillator in the same way. Notice that
the resonance frequency is different from that of a horizontally driven pendulum. Hint: If θ(0) = 0
and θ̇(0) = 0 there is no resonance, since θ̈(0) = 0, as can be seen from Eq. 2. You must therefore give
θ(0) a small initial value, for example θ(0) = 0.001.

� Write a short text to summarize your simulation results.

Part 4. Unexpected equilibrium positions

When the driving frequency and driving amplitude are both large, the driven pendulums can exhibit very
non-intuitive dynamics.

� Perform simulations with different initial angles in the range 0 ≤ θ ≤ π. Plot the corresponding
θ(t) for different values of γ, including very high frequencies (for example up to 200ω0), both for a
horizontally and a vertically driven pendulum. The pendulum can in some cases perform small and
rapid oscillations around a non-zero ”equilibrium” angle, θ ̸= 0. Try to estimate for which values of γ
and A these equilibrium positions occur. Hint: It can be helpful to plot the trajectories of the mass
in each case, i.e., (x, y) with time t as a parameter.

� Write a short text to summarize your simulation results.

Thanks to Paul Gunnar Dommersnes for sharing this project.
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